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Abstract

PRECONDITIONING STRATEGIES FOR SOLVING ELLIPTIC
DIFFERENCE EQUATIONS ON A MULTIPROCESSOR

Charles Kirkland Taft, Jr.
Captain, United States Air Force

Master of Science
Department of Computer Science

University of Illinois
157 pages

This thesis deals with choosing preconditioning strategies to

accelerate a conjugate gradient algorithm for solving elliptic

difference equations, suitable for implementation on a multiprocessor.

The hypothetical multiprocessor considered consists of p linearly

connected processors. A variety of popular preconditioning strategies

for sequential machines are examined. Numerical experiments are

conducted and recommendations made.
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1. Introduction

My thesis deals with solving systems of linear equations

Ax b,1.)

where A is a sparse symmetric and positive definite matrix. Systems of

this type arise from the discretization of second order self-adjoint

elliptic partial differential equations. Many direct and iterative

numerical methods have been developed for solving this problem; see for

L example [Varg62], [Wach66], [Youn7l], [HaYo8l and [Birk8l]. The advent

of multiprocessor systems brings with it the possibility of substantial

speedup in performing these types of numerical methods. This would

allow us to examine problems that, until now, had been too large or

complex to be computationally feasible. The new multiprocessor systems

will require that new numerical methods be generated or that older

methods be modified to take full advantage of their potential.

In this paper I consider only the conjugate gradient method and

preconditioning strategies that are best suited for implementation on a

multiprocessor system. The hypothetical multiprocessor that will be

considered consists of p linearly connected processors as shown in

figure 1.1.

L < ---- T 2 < ----.Fg ...r < 1.1

Figure 1.1
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Each processor is assumed to be capable of performing any arithmetic

operaticn in one time step, and that it takes p time steps to transfer

one floating point number from one processor to either of its neighbors.

For sequential machines, the problem of preconditioning the

conjugate gradient algorithm has been extensively studied in the

liturature. See for example [AxGu80], [CoGO76], (Eise8l], [Gust78],

[aYo8l], [Kers78], [Mant80l, [MeVo77I, [Munk80], [Reid7l], and

[Reid72].

k , 1 .. ' .,-,2.



2. Model Problem

Consider the second order self-adjoint partial differential

equations of the form

ixa(xv)-I- - (x,y)-i + f(x,y)u = g(x,y) (2.1)

with a(x,y) > 0, c(x,y) > 0 and f(x,y) > 0; defined on the unit square,

0 4 x,y 4 1; and with boundary conditions of the form

au + = y (2.2)

where- n is the derivative normal to the boundary.

Superimposing a square grid of mesh size h = 1/(n+l) and using central

difference approximations to the derivatives, the problem converts to

2solving a linear system of equations of order n . This process is fully

derived and explained in [Varg62]. Handling boundary conditions of the

form (2.2) where # 0 is discussed in [MiGr8O].

Under certain boundary conditions, the resulting coefficient

matrix A is a positive definite M-matrix [Vors81. An M-matrix is

defined such that given matrix A = (a ij),

1) all > 0 2) ai'j 4 0

3) A71 exists 4) A7 0.

In Appendix D, I will describe the nature of matrix A for each of my

test problems. The structure of matrix A is determined by the grid

point ordering scheme. Appendix A shows examples of the natural, point

red/black, line red/black and 2 line red/black ordering schemes and the

resulting itructure of the matrix A for n-6.

........................!
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3. Background

3.1. Conjugate Gradient Method

The Conjugate Gradient (CG) Method was developed by Hestanes and

Stiefel in 1952. The idea behind it is to approximate the solution

vector x by

x( m) = x(0) + m

j=1 i

where

x(0 ) is an arbitrary initial guess, the vectors v

are A-conjugate (ie. v Avi = 0 for j * i ) and

the a s are chosen to minimize lix -X1I
A

where I z IA = (z,Az)1/2

The vectors vj+ 1 are constructed by orthogonalizing the residual

r = b - Ax(J ) with respect to vj, ie. r ivi 0 for j > i. In this way,
j

each iteration is attempting to minimize the components of the residual

r along the eigenvector corresponding to the most extreme eigenvalue.

The residual then lies almost entirely in the subspace of the

eigenvectors with the remaining less extreme eigenvalues. The iteration

proceeds as if the most extreme eigenvectors and eigenvalues were not

present [Kers78I.

In the absence of round-off errors, the CG method can be considered

a direct method, in that it will converge to the true solution of a

system of order n in exactly n steps, due to the orthogonality of the

t , _ _ _ _ _ _ _ _
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vectors vj* In fact, if the nxn matrix A has only r distinct

eigenvalues, then the method converges in only r steps. Many times, the

relative error lix ( )
- xll/llxli will be quite small even for i << n.

Unfortunately, in the presence of round-off errors, the orthogonality of

the vectors vi can break down and the guaranteed finite convergence is

lost. It was this breakdown that prevented the CG method from getting

much attention. It wasn't until 1971 that interest was renewed in the

CG method. At that time, Reid (Reid7l] showed that the CG algorithm is

very effective for handling large and sparse positive definite linear

systems as arise from our model problem. Its cause was further helped

when Concus, Golub and O'Leary [CoGO76] showed that it could be used as

an effective tool for accelerating the convergence of various iterative

methods. They pointed out that the CG method possesses some very

attractive properties:

I) doesn't require prior knowledge of extreme eigenvalues to

calculate optimal convergence parameters

2) takes advantage of the entire distribution of eigenvalues of

matrix A

3) is optimal in the class of all algorithms for which

x(k + 1 ) . x(0 ) + Pk Mr(0) where K - I - 4-1N, A - M - N is a

regular splitting and Pk () is a polynomial of degree k, in

the sense that it minimizes 1Ixk+1 - xIIA.

See [CoG076] for more details.



The rate of convergence of the CG algorithm depends heavily on the

distribution of eigenvalues of matrix A. The fewer distinct eigenvalues

or the more clustered the eigenvalues, the quicker the convergence.

Unfortunately, the matrices arising from our model problem tend to have

eigenvalue distributions that are widely distributed with little

clustering. As a result, the CG algorithm by itself tends to do poorly.

This situation can be improved by "preconditioning" matrix A.

3.2. Preconditioning

The idea behind preconditioning is to obtain a matrix C such that C

-1
is positive definite and C A has a "better" eigenvalue distribution.

It is also important to choose matrix C such that solving a system

Cw - q is as easy as possible. The CG algorithm is then applied to the

new preconditioned system

C 1Ax - C-1b.

This notation has one problem in that C- IA may no longer be symmetric.

It is better to consider the preconditioned system

-1/ 1/ 1/2 C- b,/ o(C /2 AC- 1 2 )(C x) /2b, or

-l -4 T -lI
(L-AL-r )(L x) - L b,

where C- LLT.

Obviously the best eigenvalue distribution for C- A would be

achieved when C - A, then C- IA - I. This does not help us much,

however, in that solving a system Cw - q is no easier than solving the*1
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original system. The idea then is to choose matrix C as close as

possible to A, such that C-1A would have a few extreme elgenvalues with

the rest clustered around unity, while still requiring Cw - q be easy to

solve.

When matrix A is an M-matrix, Meijerink and van der Vorst [MeVo77]

introduced a set of preconditioning strategies based on an incomplete

factorization of matrix A. The idea is to choose C - LU, such that

* 'matrix C resembles matrix A, A = C - R, with L and U almost as sparse as

matrix A. The sparsity of L and U is controlled by forcing certain

predetermined positions within L and U to be zero. These positions are

defined by a set P of places (i,j) such that

PC P { (i,j) I i*j 1in, 14j~n }n

where P contains all pairs of indices ofn

off-diagonal matrix elements.

When matrix A is symmetric, we add the restriction to the set P that if

(i,j) e P then so must Cj,i) e P and consider an incomplete Cholesky

factorization (LLT or LDLT ). Meijerink and van der Vorst proved that

if matrix A is an M-matrix, then this process is stable and the

resulting factorization

C - LLT or LDLT

is positive definite.

Using this set P notation, we can describe most of the basic

preconditioning strategies. On the extremes, we have P = P and P -
n

• I
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which result in diagonal scaling, C diag(A) and preconditioning by

complete Cholesky factorization, C = A, respectively. In between we

have

P f (i,j) I A(i,j)=O I

which is che preconditioning strategy used by the ICCC(O) algorithm of

Meijerink and van der Vorst [MeVo77].

When Matrix A is positive definite, but not an M-matrix, non-

positive or small diagonal elements can result during the factorization

process, causing matrix C to be no longer positive definite. A number

of modifications have been proposed to solve this problem. Kershaw

[Kers78] recommends simply replacing the non-positive diagonal elements

by suitable positive numbers. He has found that a few diagonal elements

can become non-positive and be so replaced without distracting from the

incomplete factorization, as long as most of the pivots remain positive.

Another approach is simply to add aD to matrix A before attempting the

incomplete factorization, where D = diag(A) and a is a positive scalar.

This idea was proposed by Manteuffel [Mant80] in developing his shifted

incomplete Cholesky factorization. If a is large enough, then the

factorization is guaranteed to be positive definite. However, choosing

a too large results in very slow convergence of the resulting conjugate

gradient algorithm. Unfortunately, the only way to determine a "good"

value of a for a given problem is through trial and error. For the test

problems considered by Manteuffel, good results were achieved for a of

o00-20(1 )
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A number of variations on the incomplete factorization idea of

Meijerink and van der Vorst have been proposed. Gustafsson [Gust78]

introduced the concept of the modified incomplete factorization. Here

the elements created during the incomplete factorization that correspond

to entries in the set P are added to the diagonal elements of matrix C

prior to being discarded. The process is known as diagonal

modification. The MICCG(O) algorithm results when adding diagonal

modification to the ICCG(O) algorithm. Gustafsson reports that a faster

asymptotic rate of convergence can be achieved.

Another variation has been proposed by Munksgaard [Munk80]. Here,

instead of dropping a predetermined set of elements P during the

factorization, he proposes developing criteria for dropping only the

"smaller" fill-ins while retaining the "larger" ones. The philosophy

here is that the number of iterations required to reach a solution is

more sensitive to the size of the elements dropped than to the number

dropped. He suggests dropping fill-in elements if their numeric value

relative to the diagonal elements of their row and column is less than a

relative drop tolerance. In the k th pivot step we drop 1(k+) if
i,j

S(k+l) I<C((k) (k))1/2
-j cdii jj

The amount of fill-in is determined by the size of c. If c is close to

zero, we obtain almost a complete factorization, while c = 1 produces a

factorization where no fill-ins are added and L has the same sparsity

pattern as matrix A.
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3.3. Preconditioned Conjugate Gradient Method

Given a preconditioning matrix C and an initial guess x0 , the

standard preconditioned conjugate gradient (PCG) method can be described

in the following algorithmic format:

Algorithm 3.1

a) Initial step

1) r0 - b - Ax0

2) z0  C-lr0

3) PO , zo

b) For k - 0, 1, -..

1) axk - (rk,zk)/(Pk,APk)

2) Xk+l xk + akpk

3) rk+1 - rk - ckAPk

4) Zk+l = C-lrk+l

5) k (rk+l' Zk+l)/(rk Zk)

7 6) Pk+l ' Zk+l + OkPk"

A commonly used stopping criterion for this algorithm is to calculate

lr kl 11 (rk,rk)l12 each iteration and stop when JlrkHl < C, where e

I7
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is a user specified parameter.

One choice for the initial iterate xo is a random vector. A more

creative approach is to choose xn - C b. This uses the fact that if

matrix C is close to matrix A, then x0 - C-ib will be a reason-bly

accurate estimate for x - A-lb. Starting with a more accurate estimate

for x will hopefully reduce the number of iterations required to

generate an answer of desired accuracy.

The ICCG(O) and MICCG(0) algorithms utilize incomplete LDLT

factorization of the form

-I- T
C = (D+L)- (D + L) , (3.1)

where A - L + D + L T , L is strictly lower triangular and D and B are

positive diagonal matrices. To define D, I will use figure A5 and use

ai, bi and ci to denote the elements of the main diagonal, upper-

th
diagonal and mr upper diagonal respectively, where i is the row index

and m is the half band width of the matrix. Then D = diag(Zl ...,an) is

defined for ICCG(O) as:

2  1 c2  I
a i b i-I i-I i-m i-m

(1 1 , 2, .-.-, n)

and for MICCG(O) as:

2  1 c2 1  - r r

'i ai b i-1 i-I i-m i-m i i-m+1
ri " ci bi~~

-c

(i = 1, 2, ... , n)

,, _-. .. . .... ... -,. -. ,.,,. ,,,. 7 -j
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where in both cases, elements not defined (ie. subscripts < 0) should be

replaced by zeroes. For those algorithms where the incomplete LDLT

factorization can be described in the form (3.1), Eisenstat [Eise8l]

proposes a different implementation of our standard PCG Algorithm 3.1.

His method reduces the number of multiply-adds required per iteration by

a factor approaching one half. This is done by restating the original

problem (1.1) in the form

-1 -T ~- T -1
[(D + L)- A(D + L) ][(6 + L) x] = [(5 + L)- b]

or

=f 6. (3.2)

It can then be shown that applying PCG to (1.1) with preconditioning

(3.1) is equivalent to applying PCG to (3.2) with preconditioning

C - D-1 and setting x (D + L)-T*. The algorithm can now be written

as:

Algorithm 3.2

a) Initial step

1) t- (V + L)-I(S AXO )

1 2) i 0 0

b) For k - 0, 1,

1) &k - (tk,'k)/(PkAOk)

6
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2) Xk+ 1 - Xk + &(3 + L)t

3) kk+1 - kk - akAk

4) Zk+l = k+

5) ( k+l' k+l/('kkk )

6) Pk+1 = Zk+l + Pk

To calculate AOk' the matrix A does not have to be explicitly

calculated. The product can be computed efficiently by taking advantage

of the following identity:

= --1T -T
Ak ( + [( + L) + ( + L) -(2 - D)](3 + L) k

This can be simplified, and results in the following two step

calculation:

k = g + L)-_Tpk

APk =tk + 05 + L) -I(k -Ktk)

where K = 2B - D.

This version requires 8N + NZ(A) multiply-adds, versus 6N + 2NZ(A) for

Algorithm 3.1, where NZ(A) - number of non-zero elements in matrix A.

Another 3N multiply-adds can be saved by symmetrically scaling the

problem so that D = I, [Eise8l].
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Rutishauser considered a version of the PCG algorithm, where x and

r are calculated using a 3-term recurrence relation. It can be

represented in the following algorithmic format:

Algorithm 3.3

a) Initial step

1) choose initial guess x0

2) x = 0

3) w 1

4) r0 - -Ax 0

-II
5) z 0 C Ir0

b) For k-O0, 1,

1) ak - (zkrk)/(zk, Czk)

2)

rI k (zk'rk) -1 (
k+ 1k (k-lrk-I) k ] (k )

3) Xk+l - '-l + "+l('kzk + 'k - Xk-)

4) rk+I -r 1 + wk+l(-OZk + r k  rk I )

k-i X~l~Azk k k-
* 4
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5) Zk+ 1  C-Irk+l.

This version is particularly useful when considering the conjugate

gradient method as a means of accelerating other iterative methods, as

in [CoGO761. In general, Reid [Reid7l] showed that this version

required more storage to implement than does our standard PCG

algorithm 3.1.

When matrix A possesses "Property A", Reid [Reid72] showed how

algorithm 3.3 could be modified to reduce the amount of work per

iteration by approximately one half. In general, the same results can

be obtained if our problem (1.1) can be partitioned such that:

T b (3.3)
1F C2] 2

This can also be represented by the two matrix equations:

Cx 1 = b1 - Fx2  (3.4)

Cx 2 =b 2 - Fx. (3.5)

The idea behind Reid's modification is to choose an initial 
guess (0)

(0)
and then use it to calculate x2 via (3.5). This then implies that

Z2  and forces a . 1, where I assume z is partitioned in the same

fashion as (3.3). A simple inductive argument shows that for

J 0 0, 1, 2,

- 1 and (2j+1) z (2j) 0.
j1j
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As a result, algorithm 3.3 can be reduced to:

Algorithm 3.4

a) Initial step

1) choose initial guess x(
0 )

2) w 1

3) (0) -1(b -T (0)
3) =- C2 x )

4) r ) = (b - Fx(0)) - ClXO)

5) (0) -1 r(0)

1 1 1

6) C O) = (0) (0))

b) For k 0, 1,2,

1)

r (2k+l) (1 - )r (2k-1) _ FT (2k)
2 2k+lr2 2k+1

2) z(2k+
l)  C-1 r (2k+l)

2 2 2

3) 0 (2k+l) = (2k+1),r (2k+1))

4)

' -1 (2k+1)/3 (2k) -1w2k+2 W2k+1 2

-I
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5)

A2k) [z2k) + 0i W -1 )AX (2k-2)
1 2k+I 2k 2 12k 2k+1I

6) (2k+2) x(2k) + Ax 2 k)

7)

r 2k2) 0 W )r(2) _ F (2k+1)
1 k 2  - I-2k+2) 2 k I 2k+2Fz 2

8 (2k+2) C 1- (2k+2)8) z C U r I
I 1 1

(2k+2) (2k+2) (2k+2)
9) e,(z 1  )r

..O)

2k+3= [- W2k+2 "(
2k+ 2)/8( 2k+1) -

c) once x has been obtained to the desired accuracy, calculate

x(M) using:x2

= 2 1 (b 2 - FTx1m)).

The main advantages with this approach are that the algorithm is

working with 1/2 the number of unknowns each iteration, and that

each iteration of Algorithm 3.4 is equivalent to two iterations of

Algorithm 3.3.
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4. Investigative Process

4.1. Introduction

The investigation will be divided into three phases. In the iirst

phase I examine a group of preconditioning strategies arising from the

ideas of Meijerink and van der Vorst, Gustafsson, and MunksgaarH, and

determine how they compare to one another on a given set of problems.

The preconditioning strategies will be judged on how they influence the

eigenvalue distribution of our test matrices, and their effect on the

rate of convergence and amount of work required by a standard CG

algorithm to obtain a given relative error.

The second phase consists of analyzing each preconditioning

strategy and determining which ones might be easily adaptable to our

multiprocessor system. A prime consideration is to identify those

preconditioning strategies that minimize the total amount of work,

including the amount of interprocessor communication required to

construct the preconditioning matrix C and to solve the systems

z = C-r.

From the results of the first two phases, I will narrow the list of

possible strategi-s to two or three prime candidates for preconditioning

on multiprocessors. The third phase then consists of analyzing the

effects of these strategies on larger and more complex test problems. I

will also examine what effect various values of ,, the interprocessor
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communications cost parameter, might have on our choice of a

preconditioning strategy. The numerical experiments required during

Phase I and Phase III will be conducted on the CDC-Cyber 175 at the

University of Illinois, for which the arithmetic precision is roughly

14 decimal digits.

4.2. Software

In conducting the numerical experiments, I relied heavily on the

Harwell sparse matrix routines MA31 and EA14A. The MA31 package served

as the basis for the incomplete factorization and conjugate gradient

routines. A complete description of these routines can be found in

[Munk8O]. The program listings and on-line write-ups for the MA31

package are available in the Cyber Harwell library under the name MA31A.

The conjugate gradient routine MA31F, contained in this package,

was slightly modified. Originally, it chose as its initial guess

X- cb

In order to make it more difficult for the algorithm and to get a better

idea of how the preconditioning would effect convergence, I replaced b

by a vector with random entries between 0 and 2.

The eigenvalues of our symmetrically preconditioned matrices were

found using a Lanczos algorithm as implemented in the Harwell routine

EAI4A. This algorithm finds the eigenvalues without regard to their

multiplicity. A complete description of this routine can be found in
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[PaRe8l]. The only modification made was to replace the Harwell random

number function FAOIAS by the CDC Fortran function RANF. The complete

program listings and write-ups for this routine should be available

shortly in the Cyber Harwell library.

This routine requires that the user supply the necessary code to

calculate u - u + Av each iteration, where the subroutine EA14A supplies

the vectors u and v. Since we are working with a symmetrically

preconditioned matrix A, we actually need to calculate

u = u + L-T AL- Iv (4.1)

Twhere C = LL

This was done using the Harwell subroutines Ma31G and MA31H. The

subroutine MA31G solves the system

x = (LLT) y

using backward and forward substitution. I broke this into two separate

subroutines; MA31G1 to do the backward substitution, and MA31G2 to do

the forward substitution. The subroutine MA31H is used to calculate

Ax = y. Using these three routines, we can solve equation (4.1) in the

following four steps:

1) solve t1 - L v using MA3IG2

2) calculate t2  At using MA31H

1
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3) solve t3  L-Tt 2 using MA31G1

4) calculate u - u + t3.

Appendix F contains source listings for the programs I created, and

those Harwell routines which I modified.

4.3. Preconditioning Strategies

The following is a list of abbreviations and descriptions of the

preconditioning strategies that I have examined.

1) DS - Diagonal Scaling

This method uses C = diag(A) as its preconditioning matrix.

2) BDS - Block Diagonal Scaling

Similar to diagonal scaling, this method uses C - block diag(A),

where each principle submatrix is tr-diagonal.

3) IC(s) - Incomplete Cholesky factorization with s diagonals added

This technique was developed by Meijerink and van der Vorst

(MeVo77]. It is normally associated with matrices generated using

the natural grid point ordering scheme. The case when no fill-ins

are kept during the factorization (s-0), can easily be generalized

for matrices using other grid point ordering schemes. Here I will

limit myself to the cases s = 0, 1 and 3. They utilize set P's of
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the form:

p0 {(i,J) I A(i,j) = 0 }

P ((ij) I li-il * 0,1,m-1,m }

P {(i,J) I li-Ji * O,1,2,m-2,m-1,m }

where m is the half band width of the outer diagonal.

4) MIC(s) - Modified Incomplete Cholesky factorization with s

diagonals added

Developed by Gustafsson (Gust78], it represents an extension of the

IC(s) algorithm to include diagonal modification.

5) HARWELL(c) - Harwell package MA31 with drop tolerance c

This performs the incomplete Cholesky factorization as proposed by

Munksgaard [Munk80] and implemented by the Harwell routine MA31C.

It uses a numeric drop tolerance to control fill-ins, and includes

diagonal modification. It also incorporates minimum degree

pivoting to minimize the number of potential fill-ins generated. I

will limit myself to the two cases cff0 and c-o0 - 2 . The case c-0

generates a complete Cholesky factorization.

6) MICD(c) - Modified Incomplete Cholesky factorization with Drop

tolerance c

Similar to the HARWELL(c) algorithm, in this case the minimum

degree pivoting has been eliminated.

- 1 Ill I lllllI I Ij
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7) REBIC(s) - Reduced Block Incomplete Cholesky factorization with s

diagonals added

This is similar to the IC(s) algorithm, except that only portions

of matrix A are used to calculate the incomplete Cholesky

factorization. Parts of matrix A are ignored in order to break

matrix A into n/2 uncoupled systems of equations. The incomplete

Cholesky factorization on each system can then be performed

independently. Using the notation in Appendix B, the following is

how the matrices arising from the various grid point ordering

schemes will be partitioned:

a) Point Red/Black Ordering (Figure B4)

The elements in blocks Ei' E T and "T '' -

will be ignored during the factorization.

b) Line Red/Black Ordering (Figure B2)

The elements in blocks E2i (i - I,...,( -1)) will be

ignored.

c) 2 Line Red/Black Ordering (Figure B3)

The elements in blocks E2i (i 1 ,...,( - 1)) will be

ignored.

I will limit myself to the case s-0, except when working with the

2 Line Red/Black matrices, where I will also examine the case su3.
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Each of these preconditioning strategies was not necessarily matched

with each of the grid point ordering schemes. Table 4.1 shows which

combinations were examined.

Preconditioning Grid Point Ordering Schemes

Strategy Natural Point R/B Line R/B 2-line R/B

DS X X
BDS X X X
IC(O) X x X x
IC(i) x
Ic(3) x
MIC(O) -2 X X X X
MICD(IO ) X X X X
MICD(O) -2 X X X X
HARWELL(10 ) X X X X
HARWELL(O) X X X X
RBIC(O) X X X
RBIC(3) X

Table 4.1

,l7 4
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4.4. Phase I

4.4.1. Introduction

During this phase, I was interested in determining how the various

chosen preconditioning strategies compare to one another. I limited

myself to comparing them relative to test matrices of order 64 arising

from test problem 1 with n-8 (see appendix D). Appendix C outlines

which combinations of preconditioning strategies and grid point ordering

schemes I looked at.

A prime consideration when choosing an algorithm for this type of

problem is the amount of work required to generate an acceptable answer.

Keeping this in mind, I determined the amount of time and number of

iterations required by our PCG algorithm to produce an answer such that

lrll < 10
- 6

where r. Axi - b. iI

This was subdivided into the time required to compute the

preconditioning matrix and that required to actually perform the PCG

iterations.

Another means of comparing preconditioning strategies is to examine

their effect on the eigenvalue distribution of the test matrices.

Ideally, the eigenvalues of the symmetrically preconditioned test

matrices should be clustered around one. In an effort to gauge this, I

used the Harwell routine EA14A to calculate all the distinct eigenvalues
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(Xi) of the symmetrically preconditioned matrices to an accuracy of

-410- 4  I then calculated the range, mean and standard deviation of

(Xi - 1.0). The more successful the strategy, the closer these values

will be to zero.

The conclusions reached during this phase are not necessarily

intended to hold for larger and mGre complex problems. A much wider

variety and size of test problems would have to have been considered.

Such a comprehensive study is beyond the scope of this paper. More

exhaustive studies comparing various subsets of these preconditioning

strategies with respect to sequential machines only can be found in

[MeVo77], [Gust78], and [Munk80].

4.4.2. Software

A modified version of the Harwell incomplete factorization routine

MA31C will be used to generate all the various types of factorizations

required during this phase. As written, it performed the incomplete

factorization using a numeric drop tolerance, diagonal modification, and

minimum degree pivoting. To allow the routine to handle a wider variety

of factorizations, I made the minimum degree pivoting and diagonal

modification user controlled options. I also allowed the user to choose

either a numeric drop tolerance or a user defined function FILL to

control fill-ins. The function FILL would decide if a zero should be
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destroyed by considering only its coordinates, and would be similar in

nature to the set P of Meijerink and van der Vorst [MeVo77].

The routine MA31A, used to activate MA31C, was also changed. It

had been used to prepare the data structures required during the

incomplete factorization. Its duties were taken over by my routine

FACTOR. Eliminated was the automatic diagonal scaling of matrix A.

This necessitated a change to another Harwell routine MA31H, used to

calculate Ax - y. No longer does this routine assume Diag(A) - I. I

also added to FACTOR an option to allow the user to specify which

portions of matrix A would be' used in calculating the incomplete

factorization. This was done using a user defined function EUSE which,

when activated, identifies which portion of matrix A is to be passed on

to subroutine MA31C.

It should be noted that, while these modifications do allow a

greater variety of preconditioning strategies to be implemented, the

process at times is far from efficient. As a result, the time required

to perform some of the incomplete factorizations will be inflated. This

is especially true for the IC(s) and RBIC(s) factorizations. Normally,

the locations of the non-zero entries in the factorization are known

beforehand, and only those values need be calculated. Here, most of the

work required to generate a potential fill-in is done before the program

decides to keep it or not. This results in more values being calculated

than need be.
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The execution time of the factorization (MA31C) and the

preconditioned conjugate gradient (MA31F) routines will be determined

using the CDC Fortran function SECOND. This function returns the

central processor time from start-of-job in seconds. The difference

between the values recorded at the start and end of a routine will be

its execution time. The values returned by function SECOND are usually

accurate to two decimal places.

The statistics on the calculated eigenvalues will be generated

using the CDC Math/Science Library routines DSCRPT and DSCRP2. The

source code for both routines is in the Cyber MSL Library.

4.4.3. Results

The results of the numerical experiments have been tabulated and

placed in Tables 4.2 - 4.9 and Graphs 4.1 - 4.5 at the end of this

section. First, I will discuss some general observations about the

data. I will then look at each preconditioning strategy separately,

discuss how it relates to the other preconditioning strategies, and what

effect the different grid point ordering schemes may have had upon it.

There exists a definite correlation between the number of

iterations required to solve the preconditioned system and the size of

the spectral radius, and the range and standard deviation of the

resulting eigenvalues. The smaller the spectral radius, the range, and
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the standard deviation of the eigenvalues, the fewer the number of

iterations. In most cases, the mean is also reasonably close to zero.

This supports the idea that the closer the eigenvalues of the

symmetrically preconditioned matrix are clustered around one, the faster

the method will converge. Such observations, however, did not hold for

the MIC(O) preconditioning strategy. Unfortunately, I have not been

able to explain why. From this data, it is clear that the distribution,

rather than the number of distinct eigenvalues is the characteristic

relevant to the rate of convergence. In fact, the non-preconditioned

matrix is the matrix with the fewest distinct elgenvalues.

As a result of the relatively small size of our test system, the

times consumed by the various preconditioned C.G. algorithms are

clustered together. If any method could be classified as the fastest,

-2the Harwell(10 ) would probably be the one. It registered a time of

0.03 second when matched with the point red/black matrix and the 2-line

red/black matrix. From this data alone however, it is difficult to

conclude whether the difference in times resulting from the various

ordering schemes is significant. When the Harwell(l0 2) method is

compared to its sister method MICD(10-2 ), the benefits of minimum degree

-- 2
pivoting (Harwell(10-2)) are clearly evident. In each case, the

Harwell(10 2 ) method produced better results in every category than did

the MICD(10 -2 ) method. The MICD(10 - 2) method also proved extremely

sensitive to the type of ordering scheme used.
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Had the IC(n) methods been more efficiently implemented, they would

have matched the efficiency of the Harwell(10 - 2 ) method. That aside,

they were still very competitive. The IC(O) method proved to be a

substantial improvement over the BDS method in all areas. The results

for the IC(O) method fluctuate slightly depending on the grid point

ordering scheme used. It is unclear whether or not these changes are

significant. Additional tests would have to be conducted. The IC()

method made modest additional improvements to both the eigenvalue

distribution and rate of convergence. The timing data between the IC(O)

and IC(1) methods is so close, that it is impossible to tell which is

more efficient. The IC(3) method, on the other hand, while making

additional improvements on the eigenvalue distribution, did not improve

the rate of convergence enough to outweigh the increased cost of the

factorization. As a result, it is less desirable than the IC(O) or

IC(1) methods. However, the results of Meijerink and van der Vorst

(MeVo77J show that for larger systems, the IC(3) method is indeed

superior. How the IC(3) method would compare to the Harwell(10 - 2 )

method on larger systems has, to my knowledge, not been thoroughly

explored.

The MIC(O) method proved extremely sensitive to the type of grid

point ordering scheme used. It had the most trouble with the point

red/black matrix. Here the process became unstable and six diagonal

elements had to be changed, using Kershaw's technique [Kers78], to keep

the factorization positive definite. On the other hand, with a
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naturally ordered matrix, it seemed to be fairly competitive as far as

the time required to obtain an answer. The elgenvalue distribution,

however, suffered as compared to the IC(n) methods. While the data here

indicates the MIC(O) method slightly inferior to the IC(O) method,

Gustafsson [Gust78], using naturally ordered matrices, showed that for

larger systems the MIC(n) methods required fewer iterations than the

corresponding IC(n) methods.

The Harwell(O) method seems to be surprisingly competitive,

considering that it represents a complete factorization. However, the

results of Munksgaard [Munk8O] show that, as would be expected, this

competitiveness does not extend to larger systems. When compared to the

other complete factorization method, MICD(O), the benefits of minimum

degree pivoting are again clearly evident. In each case, the Harwell(O)

method produced fewer fill-ins and required substantially less time to

perform the factorization. Another interesting observation is that the

Harwell(O) method was not influenced by the grid point ordering scheme

used, while the MICD(O) was definitely sensitive to the ordering scheme

used. For the MICD(O) method, the number of elements in the lower

triangular part of the factorization varied from 584 to 326. This was

reflected in the time required to calculate the factorization, which

varied accordingly.

The DS and BDS methods were somewhat disappointing. The DS method,

while improving the eigenvalue distribution tremendously, did little to
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improve the rate of convergence associated with our conjugate gradient

routine. The BDS method was equally ineffectual. It produced almost no

improvement in the eigenvalue distribution over the DS method, and only

a modest improvement in the rate of convergence. Unfortunately, this

improvement in the rate of convergence was overshadowed by the cost of

the factorization. As we will see in section 4.6.3, the BDS method is

not as worthless as these results would indicate.

The RBIC(O) method proved to be reasonably successful. Where they

could be compared, its results fall almost exactly half way between

those of the BDS and IC(O) methods. Only minor fluctuations in results

occurred between the various grid point ordering schemes. The RBIC(3)

method, on the other hand, proved to be a major disappointment. In

every category, it was inferior to the RBIC(O) method. It is unclear

whether these results are characteristic of the RBIC(3) method, or

simply a consequence of the size of the test problem.

I
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Natural Ordering

FACTOR SOLVE

Preconditioning Total
Number of Number

Method Elements Time of Time Time
in L Iterations

None 0 0.0 24 0.05 0.05

DS 0 0.0 24 0.05 0.05
BDS 56 0.01* 20 0.05 0.06
IC(O) 112 0.01* 10 0.03 0.04
IC(1) 161 0.02* 7 0.02 0.04
IC(3) 245 0.03* 6 0.02 0.05

MIC(0) 2 112 0.01 11 0.03 0.04
MICD(10- ) 249 0.03 6 0.02 0.05
MICD(0) -2 455 0.07 1 0.01 0.08
HARWELL(10 ) 210 0.03 4 0.01 0.04
HARWELL(0) 290 0.03 1 0.01 0.04

Table 4.2 - Timing and convergence data resulting from solving the test
problem.

GETEIG

Preconditioning Spectral Number Statistics on (Xi - 1.0)
of Distinct

Method Radius Eigenvalues Range Mean Std. Dev.

None 8.876 33 7.518 3.00 2.059

DS 2.219 33 1.879 -0.26E-6 0.515
BDS 2.377 64 1.773 -0.32E-6 0.399
IC(O) 1.329 54 0.858 -0.0219 0.164
IC(1) 1.205 55 0.512 -0.0065 0.074
IC(3) 1.108 45 0.245 -0.0029 0.036
MIC(O) -2 2.960 49 1.499 0.361 0.347

MICD(10 ) 1.220 57 0.169 0.025 0.033
MICD(0) 2 1.00 1 0.0 0.0 0.0

HARWELL(1O ) 1.076 38 0.057 0.013 0.014

HARWELL(0) 1.00 1 0.0 0.0 0.0

Table 4.3 - Data on the eigenvalue distribution of the symmetrically
preconditioned test matrix.
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Point Red/Black Ordering

FACTOR SOLVE
Preconditioning Total

Number of Number
Method Elements Time of Time Time

in L Iterations

DS 0 0.0 24 0.05 0.05
RBIC(O) 88 0.01* 17 0.04 0.05
IC(O) 112 0.01* 13 0.03 0.04
MIC(O) 2 112 0.01* 24 0.06 0.07
MICD(10 ) 241 0.03 5 0.02 0.05
MICD(O) -2 326 0.04 1 0.01 0.05
RARWELL(O- ) 211 0.02 4 0.01 0.03
HARWELL(O) 290 0.03 1 0.01 0.04

Table 4.4 - Timing and convergence data resulting from solving the test
problem.

GETEIG
Preconditioning Spectral Number Statistics on (Xi - 1.0)

of Distinct

Method Radius Eigenvalues Range Mean Std. Dev.

DS 2.194 33 1.879 0.16E-6 0.515
RBIC(0) 1.660 52 1.333 -0.004 0.346
IC(O) 1.438 31 1.172 0.033 0.292
MIC(O) 2 18.827 32 13.951 3.821 4.539
MICD(10- ) 1.129 31 0.098 0.019 0.021
MICD(0) -2 1.00 1 0.0 0.0 0.0
HARWELL(10 ) 1.076 34 0.063 0.015 0.016
HARWELL(O) 1.00 1 0.0 0.0 0.0

Table 4.5 - Data on the eigenvalue distribution of the symmetrically
preconditioned test matrix.
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Line Red/Black Ordering

FACTOR SOLVE

Preconditioning Total

Number of Number

Method Elements Time of Time Time

in L Iterations

BDS 56 0.01* 20 0.05 0.06

RBIC(O) 88 0.01* 16 0.04 0.05

IC(O) 112 0.01* !I 0.03 0.04

MIC(O) -2 112 0.01 14 0.04 0.05

MICD(10 ) 301 0.04 6 0.02 0.06

MICD(0) -2 584 0.09 1 0.01 0.10

HARWELL(10 - ) 219 0.03 4 0.01 0.04

HARWELL(O) 290 0.03 1 0.01 0.04

Table 4.6 - Timing and convergence data resulting from solving the test

problem.

GETEIG

Preconditioning Spectral Number Statistics on (Xi - 1.0)
of Distinct

Method Radius Eigenvalues Range Mean Std. Dev.

BDS 2.180 64 1.773 -0.150 0.399

RBIC(O) 1.722 56 1.363 -0.0047 0.321

IC(O) 1.406 61 1.000 -0.013 0.173

MIC(0) 2 13.192 53 9.174 0.653 1.359

MICD(10 ) 1.377 52 0.288 0.045 0.059

MICD(0) -2 1.00 1 0.0 0.0 0.0

HARWELL(IO ) 1.072 33 0.056 0.013 0.014

HARWELL(O) 1.00 1 0.0 0.0 0.0

" Table 4.7 - Data on the eigenvalue distribution of the symmetrically

preconditioned test matrix.
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2-Line Red/Black Ordering

FACTOR SOLVE
Preconditioning Total

Number of Number
Method Elements Time of Time Time

in L Iterations

BDS 56 0.01* 20 0.05 0.06
RBIC(O) 88 0.01* 15 0.04 0.05
RBIC(3) 164 0.02* 16 0.05 0.07
IC(O) 112 0.01* 11 0.03 0.04
MIC(0) 2 112 0.01 12 0.03 0.04
MICD(10 ) 280 0.03 7 0.03 0.06
MICD(O) 2 562 0.09 1 0.01 0.10
HARWELL(10 )208 0.02 4 0.01 0.03
HARWELL(0) 290 0.03 1 0.01 0.04

Table 4.8 - Timing and convergence data resulting from solving the test
problem.

GETEIG
Preconditioning Spectral Number Statistics on (Xi - 1.0)

of Distinct
Method Radius Eigenvalues Range Mean Std.Dev.

BDS 2.196 64 1.773 -0.12E-6 0.399
RBIC(O) 1.770 55 1.363 -0.004 0.324
RBIC(3) 2.052 49 1.575 -0.128E-3 0.349
IC(O) 1.319 60 0.904 -0.015 0.163
MIC(O) 2 5.449 51 3.341 0.440 0.562
MICD(10 ) 1.484 53 0.376 0.046 0.072
MICD(0) -2 1.00 1 0.0 0.0 0.0
HARWELL(10 ) 1.073 34 0.058 0.014 0.015
HARWELL(0) 1.00 1 0.0 0.0 0.0

Table 4.9 - Data on the eigenvalue distribution of the symmetrically
preconditioned test matrix.

* - Tests using the routines from Phase III show that these values could
be reduced by up to a factor of 3 if the corresponding preconditioning
strategy had been efficiently implemented.

-- - - - n • -n | I I -II I I UI
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Natural Ordering (Part 1)
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Graph 4.1 - Shows the log base 10 of the residual norm as a function of
the iteration number.
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Natural Ordering (Part 2)

L 2  Graph Preconditioning
o Number Strategy
G 1- IC(O)
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Graph 4.2 - Shows the log base 10 of the residual norm as a function of
the iteration number.
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Point Red/Black Ordering

L 2 Graph Preconditioning
o Number_. Strategy
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Graph 4.3 - Shows the log base 10 of the residual norm as a function of
the iteration number.
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Line Red/Black Ordering

L 2  Graph Preconditioning
0 Number Strategy
G I - BDS
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.1Graph 4.4 -Shows the log base 10 of the residual norm as a function of
the iteration number.
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2-Line Red/Black Ordering

L 2  Graph Preconditioning
0 Number Strategy
G 1 - BDS

B 2 - - - - RBIC(O)
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S 4 - -- -MIC(O)
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Graph 4.5 -Shows the log base 10 of the residual norm as a function of
the iteration number.
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4.5. Phase II

4.5.1. Introduction

During this phase, I attempted to analyze each of the

preconditioning strategies and determine how easily they could be

adapted to our multiprocessor. I assumed that matrix A is of order nm

and that my multiprocessor consisted of n/2 processors (p-n/2). Under

these assumptions, Table El (Appendix E) shows the steps involved in

solving a system of equations using our preconditioned conjugate

gradient algorithm. Also included are their relative cost in arithmetic

operations and the amount of data that must be passed between

processors. Where appropriate, the relative cost of performing a

particular factorization was determined, as well as the cost 
of using it

to solve the system of equations z = C 1r.

As a matter of terminology, I assumed that each factorization

produced a preconditioning matrix of the form

C=LDL

where t is a unit lower triangular matrix and

is a positive diagonal matrix.

The system z - C r was solved using forward and backward substitution

in the following manner:

Lt - r

Lz=D t.
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In attempting to analyze each of these events, I relied heavily on the

notation defined in figures BI - B4 of Appendix B. Furthermore, I

assume that vectors x, b, r, z, and t, and matrices t and D are

partitioned in the same manner as matrix A. Also, if matrix A contains

a block Ei and an element aij , the Z and i represent theSi ij

corresponding block and element in L, respectively. Figure 4.1 shows

which blocks of matrix A, of the unknown vector x, and of the right-hand

side vector b are stored in processor i (i - 2,..., - 1) for each of

the grid point ordering schemes. For processor 1 and n/2, the storage

requirements are slightly different, in that certain blocks mentioned in

figure 4.1 are undefined. Processor i is used to calculate and store

the portions of vectors r, z, and t, and matrix D corresponding to those

portions of vector x referred to in figure 4.1, as well as portions of

that correspond to those blocks of matrix A cited in figure 4.1.

L

r i I II i I I_ _
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Data Initially stored in Processor i for a

Line Point 2-Line
Naturally Red/Black Red/Black Red/Black
Ordered Ordered Ordered Ordered
Matrix Matrix Matrix Matrix

r21-1 T2i-1 Di Qi

T21 T21 Di+n/2 F j = 2 L/2

EKU- 2  E U-2 Bi Ck k = 2[i/2i-1
E E E

E21 E21 Ei  x2i
x 21- 21 F i-1 b21-1

x2 i1  x2  Fi  b21

b b x
21-1 21-1 1

b 21 b21 Xi+n/2

bi

b i+n/2

Figure 4.1

[ 1



" 1

q

45

4.5.2. Results

First, I looked at those preconditioning strategies whose

suitability for our multiprocessor is not influenced by the grid point

ordering scheme used. These include the DS, BDS, Harwell(c) and RBIC(n)

methods. The Harwell(c) method is the only one from this group that

would be extremely difficult to implement. The minimum degree pivoting

would require exorbitant amounts of interprocessor communications.

The remaining three methods from this group can all be easily

adapted to our multiprocessor. The DS is by far the simplest. No work

is required during the factorization phase, with t = I and D = diag(A).

-1-

Solving the system z r -I is simply a matter of calculating

zi = i ri, which can be done in m arithmetic operations with no

interprocessor communications required. Each processor would solve two

such systems for a total of 2m arithmetic operations.

The BDS method is equally simple. Here, processor i is required to

perform the factorization of two uncoupled tri-diagonal matrices (T2i.1

and T 21). This will require 46m arithmetic operations per processor.

Solving the system z = C-1 r is equivalent to solving n uncoupled systems

of the form z = Ti 1r (i = 1, ..., n). Each processor will then solve

two of these systems, requiring a total of -10m arithmetic operations

and no interprocessor data transfers.

The RBIC(n) method, by its very design, is ideally suited for our

ki>
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multiprocessor. The n/2 uncoupled systems allow each processor to work

totally independently, while performing the factorization and solving

the system z - C-r. Each of the uncoupled systems will be of order 2m

with 3m-2 non-zero off-diagonal elements in its upper triangular part.

To perform the RBIC(O) factorization, each off-diagonal element a j will

be involved in the following operations:

aij := aij/a i

j :-j - ijaij

where initially D is set to diag(A).

This results in an expenditure of 3 arithmetic operations per off-

diagonal element. Thus, the RBIC(O) factorization requires a total of

-9m arithmetic operations per processor. The RBIC(3) factorization is

slightly more complicated. I assume that I am working with a 2-line

fT T -T -T
red/black matrix. If L = diag(L I 2, ... , Ln/2), then processor i

factors Qi into LiLi, where figure 4.2 shows the structure of Li and

Di = diag(l ...'a 2m) The elements of D and T are calculated in the

following manner:

S:=a -b b - -2gJ_ 2 - ?j-m+2fj-m+2

-e j_m+lej_m+l - cM C -m
j-m+1j-m+1 j- j-

b b -e e 9 be/
bj : j -m+ij-m+l J-m+2 j-m+2 - bJ 1g : /

Lj := -sj-m+2 jm+2 Sj g/ j

f :=-bj_ e j r := f /
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ej := -b. ic.~ e :a j

j-l j :'j-j aj I

for j 1 1, ... , 2m

where any elements not defined (ie. subscripts < 0)

are assumed to be zero.

When simplified, we find that the RBIC(3) factorization requires -27m

arithmetic operations per processor.

a. b g f e c

~T

Figure 4.2 2

Solving z Cf c-r, when matrix C is given as LT, requires approximately

Z(NZL) arithmetic operations to solve tt - r and 2(NZL) + 2m to solve

LTz D t, where NZL is the number of non-zero off-diagonal elements in

L. After the RBIC(0) factorization, NZL will equal 3mm-2, while after

I .

L -------------- - i-----------------------------
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the RBIC(3) factorization NZL will equal -6m. This means that -14m

arithmetic operations per processor are required if the RBIC(O) is used,

while if the RBIC(3) is used, -26m arithmetic operations per processor

are needed. In either case, no interprocessor data transfers are

required during the factorization phase or while solving z C Ir.

Next, I will look at those preconditioning strategies that require

a certain number of fill-ins be kept, or at least calculated, during the

factorization. These methods include MICD(c), MIC(s), and IC(s) for

s>O. Unfortunately, including fill-ins greatly complicates the process.

They increase the interdependence between processors both during the

factorization phase and while solving z = C-1 r. For example,

processor i may be forced to wait for processor i-i to finish

calculating before it can proceed with its work. As a result, only a

fraction of our n/2 processors may be able to operate concurrently.

This greatly reduces the advantage of having those n/2 processors. The

choice of grid point ordering scheme can reduce the severity of this

problem somewhat, but not enough to make any of these methods suitable

for our multiprocessor.

Finally we come to the IC(O) method. Unlike the other methods, its

suitablity is influenced by the grid point ordering scheme used. If we

are working with a naturally ordered matrix, the factorization process

is recursive in nature. We find that processor i cannot start its part

of the factorization process until processor i-I has started calculating

* I -
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D - These values are needed by processor i before it can start

calculating D21-l* In essence, only two processors will be able to

function concurrently while performing the factorization. A similar

problem arises when solving z - C- r.

Changing to the 2-line red/black ordering does not help the

situation that much. The only advantage gained is that now Ln!4J

processors can be working concurrently while performing the

factorization. The remaining Ln/4j processors must still wait until

these processors have calculated the data they need. This is still an

undesirable situation.

The line red/black ordering produces a matrix much more suited for

performing the IC(O) factorization on our multiprocessor. Notice that

the blocks T2 i-1 (i - 1, ..., n/2) are not directly interrelated. This

means that processor i can factor T21-1 without any interprocessor

communication. This requires -3m arithmetic operations. For

processor I to complete the factorization, it must now get the values

D21+1 from processor i+l. With these m values, processor i can finish

the factorization in -9m arithmetic operations. An additional m

arithmetic operations are required to calculate E21-2 i D211 E21-2*

These last values will be needed by processor i to solve z C Ir. This

makes a total of -13m arithmetic operations and m data transfers per

processor to calculate the IC(O) factorization.

Solving the system z = C r can also be easily done in this case.



-I:

50

During the forward substitution phase (tt = r), t can be found in

-2m arithmetic operations with no interprocessor communications. The

elements of t21 can then be found in -6m arithmetic operations, as long

as the values t21+ 1 are obtained from processor i+1. The backward

IT ---
substitution process (L z = D t) is very similar in nature. The

elements of z 2i are first calculated using -3m arithmetic operations and

no interprocessor communications. The values z21_2 are then obtained

from processor i-i. Then the values z2 i~ are calculated using -7m

arithmetic operations. The entire process requires a total'of -18m

arithmetic operations and 2m data transfers.

The point red/black matrix is equally suited for performing the

IC(O) factorization on our multiprocessor. In fact, it has one

advantage over the line red/black matrix in that the factorization can

be done without interprocessor communications. The structure of the

point red/black matrix is such that blocks D 1 through Dk are not altered

during the factorization, ie. D= D i (i = 1, ..., k). This allows us

to store those values of Di_ and Di+, needed by processor i during the

set-up phase. Thus, if processor i has blocks Bi, Eui-, Eiu Fii1, Fi,

Di, H(1i1)2' H(i+l)l, and Dk+ i available to it, the factorization can be

performed without any data being transferred between processors.

Processor i will perform the following calculations:

' -- .. . .. , , . . . . i , , , , ., , ,, ,, ' : ' 'i.
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D, Di H (i-1)2 H(i_1)2 H(i+1)1 H (i+)1
-T 1 T -T -1 T -T 1 TE - H E(i 02E- 1 f F B Bi

-. T -- T -T -1iT9= DE Fi_ = Di Fi I

D i+k 'D i+k - diag(E i 1 E i- diag(B B1) diagCF iF P

for a total of -13m arithmetic operations.

Solving the system z = C-r will still require that some

interprocessor data transfer occur. During the forward substitution

phase, processor i will need from processor i-i the m/2 elements of ti-1

corresponding to H(1 -1 )2 ' and from processor i+1 the m/2 elements of

ti+1 corresponding to H(i+l)l. A similar set of transfers will be

required during backward substitution, except involving elements from

z i+k_1 and z i+k+l . The entire process of solving z - C -r will require

-18m arithmetic operations and 2m data transfers per processor.

As I have indicated, only a handful of the chosen preconditioning

strategies can be efficiently implemented on our multiprocess-r. The

DS, BDS and RBIC(n) methods can be implemented regardless of the grid

point ordering scheme used. The IC(O) method, on the other hand, is

sensitive to the structure of the matrix A. Only when matrix A has a

structure similar to that of the point red/black matrix or line

red/black matrix can the IC(O) factorization be done efficiently.

Implementation using the point red/black matrix has an added advantage

in that the factorization can be performed without interprocessor

communication.
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4.6. Phase III

4.6.1. Introduction

From the results of Phase I and Phase II, the following

combinations of preconditioning strategies and grid point ordering

schemes are chosen for further analysis:

1) IC(O) with a point red/black matrix

2) BDS with a line red/black matrix

3) RBIC(O) with a 2-line red/black matrix.

For comparison purposes, I also consider a naturally ordered matrix with

no preconditioning. These combinations are compared relative to test

matrices of order -1000 arising from test problem 1 (n-32), test

problem 2, and test problem 3 (see appendix D). The numerical

experiments are similar to those conducted during Phase I.

The size of these problems made calculating all the distinct

eigenvalues of the symmetrically preconditioned test matrices extremely

expensive. I therefore limit myself to examining only the extreme

etgenvalues. In each case, I calculate the number of distinct

eigenvalues in the interval [0.0 , 1.2]. Then, using the estimate of

the spectral radius (p) generated by the Harwell routine EAI4A, I

calculate the number of distinct eigenvalues in the upper part of the

spectrum defined by the interval [0.8p , pl. Of primary interest is the

_j



53

number of eigenvalues that migrated into the lower part of the spectrum

as a result of the preconditioning. The greater the number of

elgenvalues in the interval [0.0 , 1.2], the more successful the

preconditioning strategy.

Finally, the effect of different values of q , the cost in time

units to transfer a piece of data between neighboring processors, on the

efficiency of each of the preconditioning strategies is examined. For

each problem, I calculate the total number of time units required by a

typical processor in our system to generate our answer. This was done

using the following equation:

Total Time = Preprocessing Time

+ [Number of Iterations x Time Units per Iteration]

where,

Preprocessing Time - Number of Arithmetic Operations

+ [d x Number of Data Transfers],

Time Units per Iteration = Number of Arithmetic Operations/iteration

+ [4, x Number of Data Transfers/iteration].

Appendix E outlines the number of arithmetic operations and data

transfers required by each processor to perform each step of our

preconditioned conjugate gradient algorithm.

' I
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4.6.2. Software

Most of the software used during this phase is similar to that used

during Phase I. However, more efficient routines BDIAG, ICCGO, and

RBICO are developed to implement the BDS, IC(O), and RBIC(O)

factorizations, respectively. Each of these three routines is based on

the following algorithm:

Algorithm 4.1

1) D = diag(A)

2) For i - I to N do

A d
3) For jeR do

4) j =

5) d -i jaj

where N = order(A), and
A

set RA defines which columns in row i are to be

used in calculating the factorization.

AFor these three routines, the following is how set R is defined:

BDS - RA j I -~ and aij*O

i~ IC(0) - R = {j JI i<j and a1 ia0 }

RBIC() - RA j I i<ji+m and
i aij#O

-B O -RA . II I Ij i m an I aii' $j*l O
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4.6.3. Results

The data from the numerical experiments can be found at the end of

this section. Tables 4.10, 12, and 14 contain the timing and

convergence data pertaining to solving each of the test problems.

Tables 4.11, 13, and 15 contain the corresponding data on the extreme

eigenvalues of the symmetrically preconditioned test matrices. Graphs

4.6 - 4.8 show the log10 of the norm of the residual as a function of

the iteration number. Graphs 4.9 - 4.11 show what effect the

interprocessor communications cost (1,) can have on the amount of work

required by each processor to calculate an acceptable answer.

Notice that in these cases, the time required to perform the

desired factorization is trivial when compared to that required to

actually solve the system. This would indicate that the savings incured

by using the point red/black ordering with the IC(O) method, as opposed

to using the line red/black ordering or block cyclic reduction, may not

be that significant in the long run. However, unless circumstances

dictate otherwise, there is no reason not to utilize the point red/black

ordering and enjoy what savings it can provide.

For these test problems, the RBIC(O) method prove at least an equal

to the IC(O) method in efficiency. Only in the case of test problem 1

does the IC(O) prove more efficient than the RBIC(0) method. The two

methods are extremely close in the number of iterations required to

solve the test problems. The RBIC(O), therefore, has a slight advantage
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in that each iteration requires fewer arithmetic operations due to the

fewer non-zero elements in the upper triangular part of its

factorization. The BDS method is consistently a distant third, though

it does represent a improvement over no preconditioning.

Unfortunately, the matrices symmetrically preconditioned by the BDS

and RBIC(0) methods consistently require more than the 750 iterations I

have allotted for calculating their eigenvalues. As a result, these

counts may be incomplete, but should be reasonably close. The BDS

method results in substantial improvement in the eigenvalue distribution

as compared to the matrix without precondltioning. The RBIC(0) and

IC (0) methods then each register moderate subsequent improvements. The

IC(0) method, as would be expected, produces the "best" eigenvalue

distribution of the three. It records the smallest spectral radius and

causes the greatest number of eigenvalues to migrate into the lower

interval.

Looking at Graph 4.9 - 4.11, we see that as the cost to transfer a

piece of data between neighboring processors ( ) increases, the

advantages of using the RBIC(0) factorization also increase. For

=0, which may not be unrealistic for loosely connected processors,

the RBIC(0) saves between 1500 and 60,000 time units over the IC(O)

method. This advantage stems from the fact that the RBIC(O) method

requires no data transfers to solve the system z C-1 r, while the IC(O)

method requires 2m data transfers.
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Test Problem I (n-
32 )

Preconditioning FACTOR SOLVE
Number of Number of

Method Elements in L Time Iterations Time

None 0 0.0 92 2.98

BDS 992 0.03 70 2.77

RBIC(O) 1504 0.03 49 2.03

IC(0) 1984 0.02 46 1.92

Table 4.10 - Timing and convergence data pertaining to solving the given

test problem, such that 11rIl<10 -6 .

Preconditioning Spectral Number of Number of

Method Radius Eigenvalues 1 Eigenvalues 2
in lower interval in upper interval

None 8.664 i0 9

8DS 2.281 30* 4

RBIC(0) 1.796 32* 6

Ic(O) 1.591 46 3

* Number of Eigenvalues found after 750 iterations.

Table 4.11 - Data on the extreme Eigenvalues

i
I

.1

!i1
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Test Problem 2

Preconditioning FACTOR SOLVE
Number of Number of

Method Elements in L Time Iterations Time

None 0 0.0 99* 2.98
BDS 960 0.03 104 3.75
RBIC(O) 1456 0.03 75 2.86
IC(O) 1921 0.02 75 2.99

* 11r 9 9 11 = 0.105E-02

Table 4.12 - Timing and convergence data pertaining to solving the given

test problem, such that IIrI10
- 6 .

Preconditioning Spectral Number of Number of
Method Radius Eigenvalues Eigenvalues 2

in lower interval in upper interval

None 8.579 9 11
BDS 2.257 29* 5
RBIC(O) 1.798 35* 5
IC(O) 1.684 49 3

* Number of Eigenvalues found after 750 iterations.

Table 4.13 - Data on the extreme Eigenvalues.
I# ."1

.. .:1 -i i I m, i i "
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Test Problem 3

Preconditioning FACTOR SOLVE
Number of Number of

Method Elements in L Time Iterations Time

None 0 0.0 99* 3.02
BDS 960 0.03 93 3.64
RBIC(O) 1456 0.02 68 2.60
IC(O) 1921 0.02 66 2.66

* 99 11 0.288E-02

Table 4.14 - Timing and convergence data pertaining to solving the given

test problem, such that jrIj<10 - 6 .

Preconditioning Spectral Number of Number of
Method Radius Elgenvalues 1 Eigenvalues 2

in lower interval in upper interval

None 22.977 4 1
BDS 2.236 31* 7
RBIC(O) 1.903 31* 5
IC(O) 1.634 49 6

* Number of Eigenvalues found after 750 iterations.

Table 4.15 - Data on the extreme Eigenvalues.

- lower interval defined as [0.0,1.2]

2 - upper interval defined as [0. 8 p,p] , where p = spectral radius.
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Test Problem 1 (n-32)

L 2  Graph Preconditioning
o Number Strategy
G 1 None

S2 ---- BDS

A 3 RBIC(0)
S 4---- IC(O)
E Q

0

F

R -2
E
S

U
A
L -4

N
0
R
M

S0 
40 60. 100.

ITERATION

Graph 4.6 - The log base 10 of the norm of the residual as a function
of the iteration number.
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Test Problem 2

L 2  Graph Preconditioning
0 Number Strategy
G 1 - None

2 -- - -BDS
B3 - RBIC(O)

A 4 -- - - IC(O)
S

0

F

R -
E

0
U
A
L -4

N
0
R
M

0. 40. 60. 120.
20. 60. 100.

4 ITERATION

Graph 4.7 -The log base 10 of the norm of the residual as a function
of the iteration number.
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Test Problem 3

L 4  Graph Preconditioning
0 Number Strategy
G I1 None

2 - -- -BDS
B 3 - RBIC(0)
A 4- - -- IC(0)

E

0 0
F

R
E
S

U
A
L

N _
0
R
M

-e
0. 40.80

20. 60. 100.

ITERATION

Graph 4.8 -The log base 10 of the norm of the residual as a function
of the iteration number.
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Test Problem I (n=32)

T 290. Graph Preconditioning
I Number Strategy

M 1-BDS
E2 ICCO)

u 3 - RBIC(O) 2
N
I
T
S 240.

I
N

T
H
0
U
S 190.
A
N
0
S

140.

90. I- +__
0 10 20

5 5 25

DATA TRANSFER COST

Graph 4.9 - Number of time units required to solve the given test
problem vs. the cost in time units to transfer one piece of data
between two processors.
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Test Problem 2

T 420. Graph Preconditioning 2
I Number Strategy
M 1 BDS
E 2 IC(0)

U 3 RBIC(O)
N 370.
I
T
S
I

N 320.

T
H

U
S 270.
A
N
0

220.

170.

120. I I I
0 10 20

5 15 2 5

DATA TRANSFER COST

Graph 4.10 - Number of time units required to solve the given test

Problem vs. the cost in time units to transfer one piece of data
between two processors.
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Test Problem 3

T 400. Graph Preconditioning
I Number StrategyM 1 BDS
E 2 JC(Q)

U 3SO3 RBC(o)
N .

TTs

I
N 300.

T
H0
U
S 250.
A
N
0
S

200.

150.

100.
0 10 205 15 25

DATA TRANSFER COST

Graph 4.11 - Number of time units required to solve the given test
problem vs. the cost in time units to transfer one piece of data
between two processors.

-4J
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5. Conclusions

As we have seen, only a limited number of our original

preconditioning strategies proved suitable for implementation on our

multiprocessor. The DS, BDS, and RBIC(0) methods proved acceptable no

matter which grid point ordering scheme was used. The IC(O) method, on

the other hand, was only feasible when teamed with point red/black or

line red/black matrices. When point red/black matrices were used, the

IC(O) factorization could be performed without any interprocessor

communications.

The numerical experiments showed that, for our given test problems

of order -1000, the RBIC(O) method, in most cases, was more efficient

than the IC(O) method. This was especially true when viewed from the

standpoint of our hypothetical multiprocessor. For values of 4>>i, the

RBIC(O) method was substantially faster.

While I realize that these few test results do not prove that the

RBIC(0) method is a superior method in all cases, they do indicate that

the RBIC(0) method could be an efficient tool for preconditioning on a

multiprocessor. More testing is needed to identify the scope of its

potential.

* -
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Appendices
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Appendix A

Grid point ordering schemes

- ,I,, i i i - l lI ...
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Natural Ordering for n-6

*6 12 18 *24 30 *36

5 11 17 23 *29 35

"4 10 16 22 *28 34

3 9 15 21 27 33

2 8 14 20 *26 *32

1 7 13 19 25 31

Figure Al

Point Red/Black Ordering for n-6

+21 "6 +27 "12 33 18

3 +24 *9 +30 "15 +36

+ 20 *5 +26 *11 +32 '17

*2 +23 '8 +29 *14+35

+ 19 '4 + 25 * 10 + 31 '16

+ + * +
*1 +22 7 28 13 34

Figure A2

*1.
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Line Red/Black Ordering for n-6

6 +24 "12 +30 *18 +36

5 +23 '11 + 29 *17 +35

4 +22 *10 +28 *16 +34

3 +21 "9 +27 "15 +33

*2 +20 *8 +26 *14 +32

"I +19 '7 +25 *13 +31

Figure A3

Two Line Red/Black Ordering for n-6

*6 "12 +30 +36 "18 24

5 " 1 + 29 +35 "17 '23

4 10 28 +34 16 *22

"3 9 '27 +33 "15 '21

*2 *8 +26 +32 "14 "20

1 7 +25 +31 "13 "19

Figure A4
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Nan-zero Structure of Matrix with Natural Ordering

X . X IX I II
X XX I X I I

x Xx I X I I
X X XI X I II

X XXI X I II
X XI Xl I II

X lx IX III
x lxx i X I x I II

X I X X X I X III
X I X XXI X I I I

Xl X XI XI II

IX IX X IxII
I X IxXXX I X II

I X I XX X I X I I
I X I X X X K I I
I XI X XXI XlI

XI X XI XII

I X IxXX I XI
I X I X XX I X I

X I X XX I X I
IX I X XXI X I

IXI X XI XI

I I X IxX X I X
II x Ilx xx I X

I X I X X XI X
III X I XX X1 X

I I XI X XI X

.1I1I Ix lx x
.1I I I X x X x

III X I X XX
II1I X I XX X

I I X XX

Figure AS
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Non-zero Structure of Matrix with Point Red/Black ordering

X IIIx X II
X I I lx x X II

X I I Ix x Xl
X I I IX XX IXI

X I I I X X XI X I
XI I I X Xl K I

Ix I X IX X I
I x I I X IXX X I
I X I I XI XX X1

I X x x Ix
XII I X X XI X

Xl I I X X1 x

IX I I x Ix x
Ilx I I X IXX X

I I X I I XI X X X
I I I IX X X

I XI IX X X
IXI I I X X

X X X I I !X II
X X X I II K II

X Xl I X II
X X IXI I X I

x x x I X I I X I
X XXI X I I XI

K lx x x I I IXI
x I X X X I I I XI

X1 K XI I I xI
Ix X IX I I X I
I Xx xI X I I XlI
I X X XI K I I X1

*1I X IxX K I IX
IX I X X K I I I

IX1 X Xl I I K
IX X I I I K1 K X X I II xj

II X X XI I I

Figure A6
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Non-zero Structure of Matrix with Line Red/Black Ordering

X x I Ix I
XXX I I I X I

XXX I I X l I
XXXI I I X I

XXXI I I X I
XXI I I Xi

ixx I Ix Ix
lXXX I I X I X
IXXX I I X I X
I XXX I I X I X I

XXXI I X I X I
XXI I X-

IXX I IX IX
IXXX I I X I X
IXXX I I X I X
I XXXI I X I X
I XXXI I X I X

XXI I XI X

X IX I lxx I I
X I X I IXXX I

x I X I XXX I
X I X I I XXXI

x I X I I XXXI
Xl XI I XX I

IxI I IX
IX IX I IX X
I X I X I IXXX
I X I X I IXXX I

X I X I I XXX
I Xl X I X X

I xI IxIX I IX X
IX I I IXXX

IIX IxIIxxx
I X I I I X XX
1 X I I I XXX
I X1 I I XXx

FgXl x x

Figure A7
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Non-zero Structure of Matrix with 2-line Red/Black Ordering

xx Xix I III
X XX I X I I I I

xx x I X I I II
X X XI x I I II

X XXI X I I II
X XI XI I II

X IxXx I IXI
X IX X X X I X I

X I X XXI I X I
X I X XII I XI

lx Ix I X IX
lxx I K1 I I

Ilxxx I X I I K
Ix X X XI X I I K

I X XX I K I I K
I X XIX X I I X

IX IxX
I X IXX I
I X I xx I
I X I X X XI
I K I X X XI

II XI X X1 I

IX I I lx X IX
I K I I IX XX I X
I X I I I XX X I K
I K I I I X X XI X
I X I I I X X X X
I XI I I X XI

II X I I X IxX X
II X I I X I XX X
II X I I K I XX X
II K I I K I XX X
II XI I XI X X

Figure A8
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Appendix B

Matrix block structures

Appendix B shows the block structure of the matrices associated

with the four grid point ordering schemes defined in Appendix A. I

assume discretization took place on a nxm grid, with n being even.

-9]
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Natural Ordering

T E
1 1

EI T2  E2

E T E

E T E
Ei Ti+ El

Ei+1 T1+2 E1+2

En-2 Tn-i En-i

E T
n-i n

where E 's are diagonal matrices of order m and

Ti's are tri-diagonal matrices of order m.

Figure BI
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Line Red/Black Ordering

T E E

T2i+l 1 21i 2i+1

T n-3 En-

T - n- 2 -

E 1 E 2  T2

E 3 T

E *.T
21+1 2(1+1)

E E Tn-n-3 n-2 I-

where Tand Eare the same as those used in figure BI

Figure B2
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2-line Red/Black Ordering

I 1 
.

Q CT

21-l "21-I
Q F T T

F2i 21+1

IT
Qp-3 ... CT 3

..p-3

! FT CT
Sp-i p-2 p-i

C 1 F2  2

3 "Q4

C2 1-l F2i Q2i

C 2i+I ' Q2(i -1l)

Cp-3 Fp-2 %-2

where k = n/2 and p = 2([k/2])

I 21-l E U1 i. 0 1  E 01
21-1 2 1 2

where Ti and E are the same as those used in figure Bi.

If p * k, ignore last row and column.

Figure B3 )

ijI
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Relating the block structure of the point red/black matrix to that

of the naturally ordered matrix is not as easy as with the line

red/black matrix and the 2-line red/black matrix. The integrity of the

Ti and Ei  blocks is not maintained during the reordering. A

relationship does exist between the two, but not at the block level. We

find that the point red/black matrix (A') and the naturally ordered

matrix (A) are related such that

A' = P'AP

where P is the permutation matrix

P = Pn;QIQ2 n] ,

in which for k = 1, 2, .. , n/2

F2k-l = [ej(k),ej(k)+ 2 , ej(k)+ 4 ,"j(k)+m_2j,

Q2k-I = [e j(k)+l e j(k)+3' " j(k)+m-I]'

F2k = [el(k),el(k)+2,' *,el(k)+m_ 2],

Q2k = [el(k)-lIel(k)+l)'"".el(k)+m-3 ]'

with J(k) = 2(k-l)mIl and l(k) = j(k)+m+l.

Figure B4 outlines the block structure for a point red/black matrix.

The blocks here are different from those found in figures BI - B3.

4 1
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Point Red/Black Ordering

T T

T T T

D2 F B B T ET
i-2 i-i i-i

D FT T T

Di+l Fi Bi+l i+1

~ B1 Ei
T T T

Fk-B E

B F+1 Dk+ 1

EB F

E 2 2 Dk+ 2

E1-2 Bi-i Fi-I D k+i-i

Ei-i Bi Dk+i

E Ei 1+1 Fi+1 Dk+i+l

Ek 1 Bk1 D

where k = n/2 and
= Bil Gilli Ii E0 . i F 01

with H 0andGF

BI =I12 Bi2 1H2 =F2 0

J with H,9 E il, F12 and Gi being diagonal matrices of order m/2

and Bil and Bi2 being upper and lower bi-diagonal matrices of order m/2

Figure B4

J

.1
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Appendix C

User input parameters

Appendix C outlines the combinations of grid point ordering schemes and

preconditioning strategies to be examined during phase I. The

parameters and functions required by subroutine FACTOR to generate each

of the combinations are defined. The abbreviations used to describe the

various preconditioning strategies are defined in section 4.3.

1

I2
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Natural Ordering (NTYPE =0)

OPTION vector Functions

Pr econditioning

Strategy 1 2 13 4 5 6 C EUSE FILL

t ~~~~None--------------- 1-

DS 0 0 0 1 0 0 - EUSEl FILLi

BDS 0 0 0 1 0 0 - EUSE2 FILLi

10(0) 0 0 0 0 0 0 - - FILLI

ICMi 0 0 0 0 0 0 - - FILL2

IC(3) 0 0 0 0 0 0 - - FILL3

MIC(0) 0 0 0 0 1 0 - - FILL1

HAWL(0-2 1 1 0 0 1 0 0- 2

HARWELL(0) I 1 0 0 1 0 00 - -

MICD(10) 0 1 0 0 1 0 102 - -

MICD(0) 0 1 0 0 1 0 0.0 - -

2.; Table Cl
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Line Red/Black Ordering (NTYPE = 1)

OPTION vector Functions
Precondtitioning

Strategy 1 2 3 4 5 6 C EUSE FILL

BDS 0 0 0 1 0 0 - EUSE2 FILLI

IC(0) 0 0 0 0 0 - - FILL1

HARWELL(10 2) 1 1 0 0 1 0 102 - -

HARWELL(0) I 1 0 0 1 0 0.0 - -

MICD(10 2  0 1 0 0 1 0 10-2  - -

MICD(O) 0 1 0 0 1 0 0.0 - -

RBIC(O) 0 0 0 1 0 0 - EUSE3 FILL

MIC(O) 0 0 0 0 1 0 - - FILLI

Table C2

II

... .. .. "j.I
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Point Red/Black Ordering (NTYPE = 2)

OPTION vector Functions
Preconditioning

Strategy 1 2 3 4 5 6 C EUSE FILL

DS 0 0 0 1 0 0 - EUSEi FILLI

IC(O) 0 0 0 0 0 0 - - FILLI

HARWELL(10- 2) 1 1 0 0 1 0 10-2 - -

HARWELL(0) 1 1 0 0 1 0 0.0 - -

- MICD(10" 2) 0 1 0 0 1 0 10- 2 - -

MICD(O) 0 1 0 0 1 0 0.0 - -

RBIC(O) 0 0 0 1 0 0 - EUSE4 FILL1

MIC(O) 0 0 0 0 1 0 - - FILLI

Table C3

A

tt
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2 Line Red/Black Ordering (NTYPE = 3)

OPTION vector Functions
Precondtitioning

Strategy 1 2 3 4 5 6 C EUSE FILL

BDS 0 0 0 1 0 0 - EUSE2 FILLI

IC(O) 0 0 0 0 0 0 - - FILLI

MIC(O) 0 0 0 0 1 0 - - FILLI

HARWELL(10- 2 ) 1 1 0 0 1 0 10- 2  - -

HARWELL(0) 1 1 0 0 1 0 0.0 - -

MICD(IO-2 0 1 0 0 1 0 i0-2 - -

MICD(0) 0 1 0 0 1 0 0.0 - -

RBIC(0) 0 0 0 0 0 0 - EUSE5 FILL1

RBIC(3) 0 0 0 1 0 0 - EUSE5 FILL3

I Table C4

.1
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Definitions for parameters used in Tables Cl - C4.

OPTION(l) - 0 - Natural order factorization
1 - Minimum degree factorization

OPTION(2) = 0 - Function FILL used to control fill-ins
1 - Drop tolerance C used to control fill-ins

OPTIONC3) = 0 - No diagonal scaling prior to factorization
1 - Diagonal elements scaled by 1+ABS(C)/N

prior to factorization
OPTION(4) = 0 - All matrix elements used in calculating

the incomplete factorization
1 - Function EUSE determines which matrix

elements to use in calculating the
incomplete factorization

OPTION(5) - 0 - No diagonal modification
1 - Diagonal modification performed

OPTION(6) = 0 - Calculate the desired preconditioning matrix
1 - Bypass calculating the preconditioining matrix

C - Drop tolerance used when OPTION(2) is in affect

EUSE - Function used to determine which elements of matrix A
are to be used in calculating the incomplete
factorization

FILL - Function used to determine which fill-ins to keep
during the incomplete factorization

11J
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Appendix D

Definition of test problems.

If

I!
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Test Problem 1

Laplace Equation

a 2u a 2u---- =0
ax2 ay2

over the unit square with Dirichlet boundary conditions:

(0,1) u-,1 (1,1)

Ax = 1/(n+l)
u=1 U=1

Ay = 1/(n+1)

(0,0) u=1 (1,0)

Phase I

n=8 m=8

Matrix A of order 64

Phase III

n=32 m-32

Matrix A of order 1024

Matrix A will be a positive definite M-matrix.
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Test Problem 2

Laplace Equation

62 u 2u

2 2 0
ox ay

over the unit square with boundary conditions:

=0

(031) bn (1,1)

(0,0) u-1 (1,0)

Ax =1/31 Ay = 1/31

n=32 m--31

Matrix A is of order 992

Matrix A will be a positive definite M-matrix.
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Test Problem 3

- -( (x 2 + y2 + 1)-6-u) - L(exy'A) + u -f(xy)
ax by by

f(x,y) -e x Y( 1 - (4x4y 2 + 4x2y 4 + 2x2y 2 + 6x 2y + 2y 3 + 2y) - (4 + x 3)exy)

over the unit square with boundary conditions

(0,1) (3) (1,1)

(2) (4)

(0,0) (1) (1,0)

(1) u = 1

(2) b-- 0
an

2au x 21
(3) u+ = e (1 x

(4) 2 u - 4yey

with Ax f 1/31 AY - 1/31

n-32 m-31

Matrix A is of order 992

Matrix A will be positive definite, but not an M-matrix.
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Appendix E

Cost of Conjugate Gradient Algorithm

Outlines the number of arithmetic operations and data transfers required

by each step of our preconditioned conjugate gradient algorithm if

implemented on our multiprocessor. I assume that the system of

equations being solved is of order nm, where n is even, and that our

multiprocessor consists of n/2 processors as arranged in figure i.I.

7

I

I '
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Arithmetic Interprocessor
Operations Data Transfers

Preprocessing
factorization
CG Algorithm

x0 =C-lb

r Ax0 - b 22m-8 2m

T 1/2 m/2(r r) 2-- /
guC - -r . ,22

e -g 0 0

r =rg 4-1n m/20 2

Each CG Iteration

f = Ae 20m-8 2m

T 1x f 60 /e f 4- m/2

x = x + Xe 4m 0

r - r + Xf 4m 0

T1/2 1 1(r r) 42m m/2

g f C-it r

-10
1 1

60 8i1 0 0

e =-g + Pe 4m 0

Table El - Cost breakdown of each step of a preconditioned conjugate
gradient algorithm as implemented on our multiprocessor.

a
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Preconditioning Factorization g -C r

Method Arith. Ops. Comm. Arith. Ops. Comm

BDS 6m 0 10m 0

IC(O) 13m 0 18m 2m

RBIC(O) 9m 0 14m 0

Table E2 - Cost breakdown of the preconditioning method dependent items
from Table El for the preconditioning methods considered during
Phase III.

Preconditioning Preprocessing 1 CG iteration

Method Arith. Ops. Comm. Arith. Ops. Comm.

1 INone 31m 3m 42

1 1
BDS 57m 3m 55-M 3=-m2 2

1 1
IC(O) 80m 7m 63"m 5

1 1
RBIC(O) 68m 3m 59m 3 m

Table E3 - Outlines the costs associated with the preprocessing stage
and each CG iteration for the preconditioning strategies considered
during Phase III if implemented on our multiprocessor.
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Appendix F

Program Listings



1
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Hierarchy Phase I Software

PROGI PROG2

* GENA . GENA

* • NORDER . . NORDER

* . ISTORE . . ISTORE

* . MA31E . . MA31E

* FACTOR . FACTOR

* . EUSE . . EUSE

* . MA31C . . MA31C

. . . MA31D . . . MA31D

. . . FILL . . . FILL

* SOLVE . GETEIG

• . MA31F . . EAI4AD

* . . MA31G . . MA3lG2

. . . MA31H . . MA31H

* . MA31GI

* . DSCRPT

. . DSCRP2
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Heirarchy Phase III Software

PROG1A/B/C/D PROG2A/B/C/D

. GENA • GENA

.. NORDER . . NORDER

. . ISTORE . . ISTORE
• *

* . MA3IE . . MA31E

. ICCGO/BDIAG/RBICO . ICCGO/BDIAG/RBICO

. SOLVE • GETEG2

* . MA31F . . EAI4AD
*

. . MA31G . . MA31G2

. . MA3MH . . MA31H

F . MA31GI

Program listings for these routines are not included.

They maybe found in the following locations:

MA31D, KA31E and MA31G - Cyber Harwell library as part of the

MA31A package.

EA14AD - Cyber Harwell library

DSCRPT and DSCRP2 - Cyber MSL library
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PROGRAM PROG1(INPU'e,OUTPUT, MESS,TAPE4-INPUT,TAPE5-MESS,
*TAPE6-OUTPUT)

C

C SOLVE THE LINEAR SYSTEM OF EQUATIONS ARISING FROM
5 C THE DISCRETIZATION FOR OUR MODEL PROBLEM USING A

C PRECONDITIONED CONJUGATE GRADIENT ALGORITHM.
C
C SUBROUTINE GENA
C---------------

10 C PERFORMS THE DISCRETIZATION OF THE CURRENT PROBLEM.
C THE USER SPECIFIED INPUT PARAMETER NTYPE DETERMINES
C THE TYPE OF GRID POINT ORDERING SCHEME TO BE USED:
C NTYPE - 0 - NATURAL
C 1 - LINE RED/BLACK

15 C 2 - POINT RED/BLACK

C 3 - 2 LINE RED/BLACK
C
C SUBROUTINE FACTOR
C------------------

20 C CALCULATES THE PRECONDITIONING MATRIX BY INCOMPLETE
C FACTORIZATION. THE TYPE OF INCOMPLETE FACTORIZATION
C DONE IS DETERMINED BY THE USER SPECIFIED OPTION VECTOR:
C OPTION(I) - 0 - NATURAL ORDER FACTORIZATION
C I - MINIMUM DEGREE FACTORIZATION

25 C OPTION(2) = 0 - FUNCTION FILL USED TO CONTROL FILL-INS
C 1 - DROP TOLERANCE C USED TO CONTROL
C FILL-INS
C OPTION(3) - 0 - NO DIAGONAL SCALING PRIOR TO
C FACTORIZTION

30 C I - DIAGONAL ELEMENTS SCALED BY 1+ABS(C)/N
C PRIOR TO FACTORIZATION
C OPTION(4) - 0 - ALL MATRIX ELEMENTS USED IN CALCULATING
C THE INCOMPLETE FACTORIZATION
C 1 - FUNCTION EUSE DETERMINES WHICH MATRIX

35 C ELEMENTS TO USE IN CALCULATING
C THE INCOMPLETE FACTORIZATION
C OPTION(5) - 0 - NO DIAGONAL MODIFICATION
C 1 - DIAGONAL MODIFICATION PERFORMED
C OPTION(6) - 0 - CALCULATE THE DESIRED PRECONDITIONING

40 C MATRIX
C 1 - BYPASS CALCULATING PRECONDITIONING MATRIX
C
C SUBROUTINE SOLVE
C-----------------

45 C SOLVES THE LINEAR SYSTEM USING THE HARWELL MA31F
C PRECONDITIONED CONJUGATE GRADIENT ALGORITHM.
C MITS - MAXIMUN NUMBER OF ITERATIONS ATTEMPTED
C EPS - DESIRED ACCRACY OF SOLUTION IN TERM OF
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CTHE NORM OF THlE RESIDUAL
50 C

C FOR MORE DETAILS SEE THE INDIVIDUAL SUBROUTINES.
C

REAL A(650),B(64),W(64,3),tJ1(64,3)
INTEGER INI(200),INJ(650),IK(64,4),IW(64,4),OPTIONC6)

55 C
COMMON/MA31I/DD,LP,MP
COMMON/MA31J/LROW,LCOL,NCP,ND, IPD
COMMON /MA3 1K/NURL, NUCL, NUAL
COMMON /MCOMM3 /OPTION

60 COMMON/MA3 1LIEPSTOL,U
COMMON/MA3 IM/NI,NJ,NVERSN,NTYPE
COMMON/MA3 iN/MITS ,EPS1

C

EXTERNAL FILL,EUSE
65 C

DATA DD,LP,MPJ1.O,6,5/
DATA EPSTOL,U/2.OE-6, 140E2/
DATA NI,NJ/8,8/
DATA IAI,IA.J,NN/200,650,64/

70 D~ATA MITS,EPS1/5O,1.OE-6/
C

* ND-NN

C

C5RAL ,* EN(N,,IONI,INJ,IAA6,BIW

C
80AIF (OTIN(6).EQ.1) GO TO 5 AW,,IKI
C
C0 IEF OTE D ERED GACTOATO
C

CALLOM HEDI FACTOR(NZA IZIONAI JIIWWCILEUE
85GT1

5 AL CONTINUEAIINIIIAKIWWCILU
C5G O1

C NO PRECONDITIONING REQUESTED
C GENERATE IDENTITY MATRIX

90 C
LROWO0
DO 10 I-1,NN
IK(I,1)-0
IK(1,2)-I

95 tJ(1,2)u.1.0
10 CONTINUE
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15 CONTINUE
C
C PERFORM THE PRECONDITIONED CONJUGATE GRADIENT ITERATION

100 C
CALL SOLVE(NN,NZ,A,INI,INJ,IAI,IAJ,W,IK,B,WI)

C
END

SUBROUTINE GENA(NN,NZ,A,INI,INJ,IAI,IAJ,D,B,IK,IW)
C

C
5 C GENAI

C
C
C PERFORMS THE DISCRETIZATION OF THE LAPLACE EQUATION
C OVER THE UNIT SQUARE WITH DIRICHLET BOUNDARY CONDITIONS

10 C USING A NI X NJ GRID.
C IDENTIFIED AS PROBLEM I IN TEXT.
C

C
15 C INPUT PARAMETERS

C
C
C NN - ORDER OF MATRIX A
C IAI - SIZE OF ARRAY INI

20 C IAJ -SIZE OF ARRAYS INJ AND A
C
C OUTPUT PARAMETERS
C------------------

C
25 C NZ - NUMBER OF NON-ZERO ELEMENTS IN THE UPPER

C TRIANGULAR PORTION OF MATRIX A
C A - ARRAY CONTAINING THE NON-ZERO ELEMENTS IN
C THE UPPER TRIANGULAR PORTION OF MATRIX A
C IN ROW ORDER

30 C INI/INJ - ARRAYS CONTAINING THE ROW/COLUMN
C INDICES OF THE CORRESPONDING ENTRY
C IN ARRAY A (IE. INI(I) AND INJ(I)
C CONTAIN THE ROW AND COLUMN INDEX
C FOR THE ENTRY IN A(I) )

35 C D - ARRAY CONTAINING THE DIAGONAL ELEMENTS OF
C MATRIX A
C B - CONTAINS THE RESULTING RIGHTHAND SIDE
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C IK(I,1) - NUMBER OF ELEMENTS IN ARRAY A BELONGING
C TO ROW I

40 C IK(J,2) - NUMBER OF ELEMENTS IN ARRAY A BELONGING

C TO COLUMN J
C IW(I) - POINTS TO THE FIRST ELEMENT OF ROW I IN
C ARRAY A
C

45 C COMMCN BLOCK PARAMETERS
C------------------------
C
C LROW,LCOL,NCP,IPD,DD - NOT USED
C ND - ORDER OF MATRIX A

50 C LP - OUTPUT FILE UNIT NUMBER
C MP - MESSAGE FILE UNIT NUMBER
C NI - NUMBER OF GRID POINTS IN THE X DIRECTION
C NJ - NUMBER OF GRID POINTS IN THE Y DIRECTION
C NVERSN -t PROBLEM IDENTIFIER

55 C NTYPE - DETERMINES GRID POINT ORDERING TO BE
C USED. SEE NORDER FOR DETAILS
C

REAL A(IAJ),B(NN),D(NN),ATYPE(4)
INTEGER INI(IAI),INJ(IAJ),IK(NN,2),IW(NN)

60 C
COMMON/MA31J/LROW,LCOLNCP,ND, IPD
COMMON/MA31I/DD,LP,MP
COMMON/MA3 iM/NI ,NJ, NVERSN,NTYPE

C
65 DATA ATYPE/7HNATURAL,7HLINE RB,8HPOINT RB,8H2LINE RB/

WRITE(MP,2)
2 FORMAT(1I1H GENA START)

C
C INITIALIZE DATA

70 C
DO 5 I-1,ND
IK(I, l)-0
IK(I,2)-O
IW(I)-O

75 5 CONTINUE
c

CALL TIME(AT)
CALL DATE(AD)
CALL SECOND(TIMI)

80 C
NNAT-O

NZ=0
C
C PROCESS GRID POINTS IN NATURAL ORDER

85 C PERFORMING THE DISCRETIZATION
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C
DO 100 J=1,NJ
DO 90 I=1,NI
NNAT-NNAT+ 1

90 N-NORDER(NTYPE, I,J,NNAT)
D(N)-4.O
B(N)-O.O
IF CCI.EQ.1).OR.CI.EQ.NI.)) B(N)-B(N)+1.O
IF ((J.EQ.1).OR.(J.EQ.NJ)) B(N)=B(N)+1.O

95 C
IF (I.EQ.NI) GO TO 50
NZ-NZ+l

NT=NORDERCNTYPE14-1,J,NNAT+1)
100 CALL ISTORECN,NT,INI,INJ,IAI,IK,ND,NZ)

C
50 CONTINUE

IF (J.EQ.NJ) GO TO 90
NZ=NZ+ 1

105 A(NZ)--l.O
N4T-NORDER(NTYPE,I ,J+1,NNAT+NI)
CALL ISTORE(N,NT,INI,INJ,IAI,IK,ND,NZ)

C
90 CONTINUE

110 100 CONTINUE
C
C INITIALIZE IW(I) TO POINT JUST BEYOND WHERE THE
C LAST COMPONENT OF ROW I WILL BE STORED
C

115 KI-1
DO 200 I-1,ND
KI-KI9IK(I, 1)

200 IW(I)-KI
C

120 C REORDER BY ROWS USING IN-PLACE SORT ALGORITHM
C

* CALL MA31ECINI,INJ,,qZ,IW,ND,A)
C
C REINITIALIZE IW(I) TO POINT TO THE BEGINNING OF ROW I

.1125 C
KK= 1

* DO 210 IR-1,ND
IW( IR)-KK

210 KK-KK+IK(IR~1)
130 DO 220 I-1,NZ

220 INI(l)-IABS(INICI))
C

CALL SECOND(TIM2)



102

TIMD-TIM2-TIM 1
135 C

C OUTPUT STATISTICS
C

WRITE(LP,250) TIMD
250 FORMAT(13H GENA TIME - ,F6.3,4H SEC)

140 WRITE(LP,260) NVERSN
260 FORMAT(11H VERSION - ,J2)

WRITE(LP,265) ATYPE(NTYPE+l)
265 FORMAT(14H MATRIX A HAS ,A1O,9H ORDERING)

WRITE(LP,270) AD,AT
145 270 FORMAT(18H DATE GENERATED ,A1O,A1O)

WRITE(LP,280) ND,NZ
280 FORMAT(6H ND -,I4,6H NZ ,14)

WRITE(MP, 290)
290 FORMAT(9H GENA END)

150 C
RETURN
END
SUBROUTINE ISTORE(N,NJ,INI,INJ,IAI,IK,NP,NZ)

155 INTEGER INI(IAI) ,INJ(IAI),IK(NP,2)
C
C SUBROUTINE USED TO UPDATE ROW AND COLUMN COUNTS
C

IF (N.GT.NJ) GO TO 10
160 INI(NZ)=N

IK(N, 1 )=IK(N, 1 )+I
INJ(NZ)-NJ
IK(NJ, 2)-IK(NJ, 2)+1
GO TO 20

165 10 INI(NZ)=NJ
IK(NJ, 1 )=IK(NJ, I )+1
INJ (NZ) -N
IK(N,2)=IK(N,2)+l

20 CONTINUE
170 RETURN

END

FUNCTION NORDER(NTYPE,I,J, N)
C
C SUBROUTINE TO PERMUTE AN ELEMENT FROM NATURAL ORDERING TO
C ONE OF THE OTHER ORDERING SCHEMES

5 C
C NTYPE - 0 NATURAL ORDERING

.. j

- - -?
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C = I LINE RED/BLACK ORDERING

C - 2 POINT RED/BLACK ORDERING

C - 3 2 LINE RED/BLACK ORDERING

10 C
INTEGER PTRB,OFFST(4)
COMMON/MA3 IM/NI,NJ,NVERSN,NTYP

DATA OFFST/32,512,496,
4 96/

DATA NATURL,LINRB,PTRB,L2RB/0,1,2,
3 /

15 C
NTEMP-N

C
IF (NTYPE.EQ.NATURL) GO TO 100

C
20 IMOD-MOD(I+1,2)

JMOD=MOD(J+1, 2)
C

C DETERMINE IF LINE RED-BLACK ORDERING REQUESTED
C

25 IF (NTYPE.NE.LINRB) GO TO 20

NTEMP=J+ ((I-I)/2)*NJ
IF (IMOD.EQ.O) GO TO 15

NTEMP-.NTEMP+OFFST(NVERSN+l)
15 CONTINUE

30 GO TO 100
20 CONTINUE

C
C DETERMINE IF POINT RED-BLACK ORDERING REQUESTED

C
35 IF (NTYPE.NE.PTRB) GO TO 30

NTEMP-(N+I) /2

IF (IMOD.EQ.JMOD) GO TO 25

NTEMP-NTEMP+OFFST (NVERSN+)

25 CONTINUE
40 GO TO 100

30 CONTINUE
C
C DETERMINE IF TWO LINE RED-BLACK ORDERING REQUESTED

* C

1 45 NTEMP-J+IMOD*NJ+((1-)/
4 )*NJ* 2

NIMOD-MOD( (I+I)/2,2)

IF (NIMOD.EQ.1) GO TO 100

NTEMP-NTEMP+OFFST (NVERSN+1)

C
50 100 CONTINUE

NORDER-NTEMP
RETURN
END
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SUBROUTINE FACTOR(NN,NZA,A,INI,INJ,IAI,IAJ,IK,IW,
*W, C,FILL, EUSE)

C
C SUBROUTINE TO CALCULATE THE PRECONDITIONING MATRIX

5 C USING THE MODIFIED HARWELL ROUTINE MA31C. THIS
C SUBROUTINE PERFORMS THE SAME FUNCTIONS AS THE
C HARWELL ROUTINE MA31A. SEE DESCRIPTION OF THE HARWELL
C MA31 PACKAGE FOR MORE DETAILS.

10 REAL A(IAJ),W(NN,3)
INTEGER IK(NN,4),IW(NN,4),INI(IAI),INJ(IAJ),OPTION(6)
LOGICAL FILL,EUSE

C
COMMON/MA31I/DD,LP, MP

15 COMKON/MA31J/LROW,LCOL,NCP,ND,IPD

COMMON/MA3 IK/NURL, NUCL, NUAL
COMMON/MCOMM3 /OPTION
COMMON/MA3 IM/NI,NJ,NVERSN,NTYPE

C
20 CALL SECOND(TIMI)

~C
NZ-NZA
NZP I-NZA+l
IAJ 1-IAJ-NZA

25 C
C SAVE ROW INDEX FILE IK(K,l)
C

DO 5 K-m1,NN
5 IK(K,4)-IK(K,I)

30 C
IF (OPTION(4).EQ.O) GO TO 18

C
C ELIMINATE THOSE ELEMENTS NOT TO BE USED IN THE
C INCOMPLETE FACTORIZATION AS DETERMINED BY THE

35 C FUNCTION EUSE.
C

NZ1-NZ+I
KK-NZ
DO 12 K-1,NZ

40 I-INI(K)
J-INJ(K)
IF (EUSE(I,J)) GO TO 10
IK(l, l)-IK(l, l)-l
IK(J,2)-IK(J,2)-1

45 GO TO 12
10 CONTINUE

KK-KK+I
A(KK)-A(K)

i4i
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INJ (KK) -J
50 12 CONTINUE

C
C REBUILD THE START OF ROW I FILE IW(I,1)
C

KI-NZI
55 DO 14 K-1,ND

IW(K, 1 )-KI
KI-KI+IK(K, I)

14 CONTINUE
C

60 NZ-KK-NZA
CALL SECOND(TIM2)

C
IF (NZ.NE.0) GO TO 18

C
65 C SPECIAL CASE OF DIAGONAL SCALING

C
DO 15 I-1,ND
W(i,2)-W(i,I)
IK(I,2)-I

70 15 CONTINUE
LROW-O
LCOL-O
IFLAG-0
GO TO 45

75 C
C CONSTRUCT COLUMN FILE IW(I,2) TO POINT JUST BEYOND WHERE THE: C LAST COMPONENT OF COLUMN I WILL BE STORED
C
18 KJ-IAI-NZ+l

80 DO 20 I-1,ND
KJ-KJ+IK(I,2)
IW( 1,2)-KJ

20 CONTINUE
C

* 85 C CONSTRUCT COLUMN FILE IN HIGH ORDER PART OF INI
C

1 DO 30 IR-1,ND
KPP-IW(IR, I)
KLL-KPP+IK(IR,1 )-1

90 IF (KPP.GT.KLL) GO TO 30
DO 25 K-KPP,KLL
JINJ (K)

4 KR-IW(J,2)-1
IW(J,2)-KR

95 INI(KR)-IR
25 CONTINUE
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30 CONTINUE
C
C TRANSFER INPUT MATRIX TO TAIL END OF ARRAY A

*100 C AND MODIFY INJ TO REFLECT THE MOVE
C

NUAL-IAJ+ I
DO 40 II-iND
I-ND-I 1+1

105 W(1,2)-W(I,l)
KP-IW(I,l)
KL-KP+IK( 1,1)-l
IF (KP.GT.KL) GO TO 38
DO 35 KK-KP,KL

110 K-KP+KL-KK
NUAL-NUAL- 1
ACNUAL)-A(K)
INJ(NUAL)-INJ(K)

35 CONTINUE
115 38 IW(I,1)-NUAL-NZA

40 CONTINUE
C
C INITIALIZE COMM!ON MA31J AND MA31K VARIABLES
C

120 LCOL-NZ
LROW-NZ
NTJRL-O
NUCL-IW(1 ,2)
NUAL-NUAL-NZA

125 IFLAG-O
NCP-O

CALL SECOND(TIM2)
C

130 C PERFORM THE FACTORIZATION
C

CALL MA31C(ND,NZ,W(1,2),A(NZPI),INI,INJ(NZPL),
1IAI,IAJl,IK,IW,IW(1,3),W(1,3),IFLAGC)

C
135 45 CALL SECOND(TIM3)

C
C RESTORE INI

C
140 KP-1
140 DO 56 I1iND

KL-KP+IK(I 4)-i
IF (KP.GT.KL) GO TO 56
DO 55 K-KP,KL
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55 INI(K)-I
145 56 KPKL+1

C
C OUTPUT STATISTICS ON THE FACTORIZATION
C

WRITE(LP, 58)
150 58 FORMAT(25HORESULTS OF FACTORIZATION)

WRITE(LP,60) (OPTION(I),I-l,6),c
60 FORMAT(IHO,9HOPTION - 611,2X,4HC - ,F9.5)

WRITE(LP,65) IFLAG

65 FORMAT(9H IFLAG - ,13)
155 C

C TPD - TIME REQUIRED TO PREPARE DATA ARRAYS
C PRIOR TO CALLING MA31C.
C TD - TIME REQUIRED BY MA31C TO PERFORM THE
C FACTORIZATION.

160 C TDT - TOTAL TIME REQUIRED BY SUBROUTINE FACTOR.
C

TDT-T IM3-T IMI
TPD-TIM2-TIM1
TD-TIM3-TIM2

165 C
WRITE(LP,70) TDT,TPD,TD

70 FORMAT(7H TDT - ,F6.3,7H TPD " F6.3,6H TD ,F6.3)
C

WRITE(LP, 85) NTYPE,NVERN
170 85 FORMAT(9H NTYPE - ,12,2X,1OHVERSION ,12)

WRITE(LP,90) LROW
90 FORMAT(21HONUM ELEMENTS IN L - ,14)

WRITE(LP, 100) NfD,NZA
100 FORMAT(6H ND - ,13,7H NZA - ,14)

175 C
150 CONTINUE

RETURN
END

XI



108

LOGICAL FUNCTION EUSE(I;J)
C
C EUSE1
C

5 C
C ELIMINATES ALL OFF-DIAGONAL ELEMENTS.

C USED FOR DIAGONAL SCALING
C

EUSE- • FALSE.

10 RETURN
END

LOGICAL FUNCTION EUSE(I,J)
C
C EUSE 2

C-------
SC

C USED DURING BLOCK DIAGONAL SCALING (BDS).
C KEEPS ONLY THOSE ELEMENTS IN THE TRI-DIAGONAL
C PORTION OF THE MATRIX A.
C

10 EUSE-.FALSE.
IF (IABS(J-I).LE.1) EUSE-.TRUE.
RETURN
END

LOGICAL FUNCTION EUSE(I,J)
C
C EUSE3
C------

5 C
C USED TO GENERATE THE LINE RED/BLACK REDUCED BLOCK FORMAT
C

EUSE- • FALSE.
ID-IABS(J-I)

10 IF ((ID.LE.I).OR.(ID.EQ.32)) EUSE=.TRUE.

RETURN
END

L 2
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LOGICAL FUNCTION EUSE(I,J)
C
C EUSE4
C

5 C
C USED TO GENERATE THE POINT RED/BLACK
C REDUCED BLOCK MATRIX.
C

EUSE- • FALSE.
10 MII(I-]/8)+1

= aKJ-((J-1) /8)+1

MD-IABS (MKJ-MI)
IF (MD.EQ.4) EUSE-.TRUE.
RETURN

15 END

LOGICAL FUNCTION EUSE(I,J)
C
C EUSE5
C-----

5 C
C USED TO GENERATE THE 2 LINE RED/BLACK REDUCED BLOCK FORMAT
C

EUSE- .FALSE.
IF (IABS(J-I).LE.8) EUSE-.TRUE.

10 RETURN
END

SUBROUTINE MA31C(N,NZ,D,A,INI,INJ,IAI,IAJ,IK,
1IP,IW,W,IFLAG,C)

C
C MA31C IS PART OF THE HARWELL MA31 PACKAGE.

5 C SEE ROUTINE MA31A FOR DETAILS.
C MODIFIED TO CALCULATE A WIDER VARIETY OF INCOMPLETE
C CHOLESKY FACTORIZATIONS.
C

EXTERNAL FILL
10 REAL A(IAJ),W(N),D(N)

INTEGER IP(N,2) ,OPTION(6)
LOGICAL CHANGE,FILL
INTEGER IK(N,3),IW(N,2),INI(IAI),INJ(IAJ)
COMMON/MA31I/DD,LP,MP
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15 COMMON/MA31J/LROW,LCOL,NCP,ND,IPD
COMMON/MA31K/NURLNUCL,NUAL
COMMON/MCOMM3/OPTION
COMMON/MA31L/EPSTOL,U

C

20 C OPTION DETERMINES HOW THE FACTORIZATION WILL BE DONE
C OPTION(i) - 0 - NATURAL ORDER FACTORIZATION
C - 1 - MINIMUM DEGREE FACTORIZATION
C OPTION(2) - 0 - FUNCTION FILL USED TO CONTROL FILL-INS
C - I - DROP TOLERANCE C USED TO CONTROL FILL-INS

25 C OPTION(3) 0 - NO DIAGONAL SCALING USED
C - I - DIAGONAL ELEMENTS SCALED BY
C I+ABS(C)/FLOAT(N)
C OPTION(4) - NOT USED HERE
C OPTION(5) - 0 - DIAGONAL MODIFICATION NOT CONSIDERED

30 C - I - DIAGONAL MODIFICATION CORRESPONDING
C TO THE DROPPED FILL-INS IS PERFORMED
C OPTION(6) - NOT USED HERE
C
C IP(I,1),IP(I,2) POINT TO THE START OF ROW/COLUMN I.

35 C IK(I,1),IK(I,2) HOLD THE NUMBER OF NONZEROES IN ROW/COLUMN I
C OF THE LOWER TRIANGULAR PART OF A.
C DURING THE MAIN BODY OF THIS SUBROUTINE THE VECTORS
C IK(*,3),IW(*,1) AND IW(*,2) ARE USED TO HOLD DOUBLY
C LINKED LISTS OF ROWS THAT HAVE NOT BEEN PIVOTAL AND

40 C HAVE EQUAL NUMBER OF NONZEROES.
C IK(I,3) HOLD FIRST ROW/COLUMN TO HAVE I NONZEROS OR
C ZERO IF THERE ARE NONE.
C IW(I,) HOLD ROW/COLUMN NUMBER OF ROW/COLUMN PRIOR TO
C ROW I IN ITS LIST OR ZERO IF NONE.

45 C IW(I,2) HOLD ROW/COLUMN NUMBER OF ROW/COLUMN AFTER
C ROW I IN ITS LIST OR ZERO IF NONE.
C DURING THE MAIN BODY OF THE SUBROUTINE INI AND INJ
C KEEP A COLUMN FILE AND A ROW FILE CONTAINING
C RESPECTIVELY THE ROW NUMBERS OF THE NONZEROS OF

50 C EACH COLUMN AND THE COLUMN NUMBERS OF THE NONZEROS
C OF EACH ROW. THE IP ARRAYS POINT TO THE START
C POSITION IN INI AND INJ OF EACH COLUMN AND ROW.
C

DATA ZERO,ONE,CMAX/O.Ot1.O,I.OE20/
55 C

C INITIALIZE IK(*,3) AND LOCAL VARIABLES.
CHANGE-.TRUE.
IF (C.LE.ZERO) CHANGE-.FALSE.
NZO-NZ

60 IPD-N
ALFA-1.0/0. 90
B1--.03
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B2- .03
NFILL-IAJ-NZO-N

65 MCL-LCOL
CO-O

IF (OPTION(3).NE.0) CO-ABS(C)/FLOAT(N)
CC**2
DO 5 I-1,N

70 D(I)=(I+CO)*D(I)
5 IK(I,3)-O

• C

C SET UP LINKED LISTS OF ROWS/COLUMNS WITH EQUAL NUMBER
C OF NON-ZEROS.

75 C
IF (OPTION(1).NE.0) GO TO 9
DO 8 I-I,N

: IW( I 2) -I+1

80 8 CONTINUE
IW(N,2)-O
IK(1 ,3)-1
GO TO 15

c
85 9 CONTINUE

DO 10 I-I,N
NZI-IK(I, I )+IK(I ,2)+1
IN- IK(NZI,3)
IK (NZI, 3)-I

90 IW(I,2)-IN
IW(I,1)-O

10 IF (IN.NE.0) IW(IN,1)-I
15 CONTINUE
C

95 C START THE ELIMINATION LOOP
DO 180 IIP*1,N

C
C SEARCH ROWS WITH NRJP NONZEROS.

DO 20 NRJP-l,N
100 JP-IK(NRJP,3)

IF(JP.GT.0) GO TO 25
20 CONTINUE

C
C ROW JP IS USED AS PIVOT.

105 C
C REMOVE ROWS/COLUMNS INVOLVED IN ELIMINATION FROM
C ORDERING VECTORS.
C

25 DO 45 L-1,2
IiO KPP-IP(JP,L)

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ I
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KLL-IKCJP,L)+ KPP-l
IF (KPP.GT.KLL) GO TO 45

* DO 40 K-KPP,KLL
IF CL.EQ.2) GO TO 27

115 J-INJCK)
GO TO 28

27 J-INICK)
28 lL-IW(J,1)

IN-IW(J,2)
120 IW(J,2)--

IF (OPTION(1).EQ.O) GO TO 40
IF (IN.LT.O) GO TO 40
IF (IL.EQ.O) GO TO 30
IW(IL,2)-IN

125 GO TO35
30 NZ-IK(J, i)+IK(J,2)+1

IK(NZ ,3)-IN
35 IF (IN.GT.O) IW(IN,1)-IL
40 CONTINUE

130 45 CONTINUE
C
C REMOVE JP FROM ORDERING VECTORS

IL=IW(JP, 1)
IN-I W(JP, 2)

135 IW(JP,2) --10
IF (OPTION(1).NE.O) GO TO 54
IK(1 ,3)-JP+1
GO TO 55

54 CONTINUE
140 IF (IN.LT.O) GO TO 55

NZ-IK(JP, 1)+IKCJP,2)+l
IK(NZ ,3)-IN
IF(IN.GT.O) IW(IN,1)-IL

55 CONTINUE
145 C

C STORE PIVOT.

Li C COMPRESS ROW FILE IF NECESSARY.

150 IF(LROW4IK(JP,1)+IKJP,2).GT.IAJ-N )C-CMAX
F IF (NURL+IK(JP,)+IK(JP,2) .LT.NUAL) GO TO 60

CALL MA31D(A,INJ,IAJ,N,IK,IP, .TRUE.)

60 KP-IP(JP,l)
KL-IK(JP, i)+KP-1

155 IP(JP,1)-NURL+l
IF (KP.GT.KL) GO TO 90

C
C REMOVE JP FROM COLUMNS CONTAINED IN THE PIVOT ROW.
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DO 85 K-KP,KL
V160 J-INJ(K)

KPC-IP(J, 2)
NZ-IK(J,2)-l
IK(J,2)-NZ
KLC-KPC+NZ

165 IF (KLC.GT.KPC) GO TO 65
INI(KPC)-0
GO TO 80

65 DO 70 KC-KPC,ICLC
IF (JP.EQ.INI(KC)) GO TO 75

170 70 CONTINUE
75 INI(KC)-INI(KLC)

INI (KLC )-O
80 LCOL-LCOL-1

NURL-NURL+l
175 INJ(NURL)-J

A(NURL) -A(K)
85 INJCK)-O

C
C TRANSFORM COLUMN PART OF PIVOT ROW TO THE ROW FILE.

180 90 1P2-IP(JP,2)
KL2-IK(JP, 2)+KP2-1
IF CKP2.GT.KL2) GO TO 100
DO 95 K-KP2,KL2
NIJRL-NURIA-

185 LCOL-LCOL-1
I-INI(K)
KPR-IP(I, 1)
KLR-KPR+IK(I, 1)-i
DO 92 KR-KPR,KLR

190 IF CJP.EQ.INJ(KR)) GO TO 93
92 CONTINUE
93 INJ(KR)-INJ(KLR)

A(NURL ) mAKR)
A(KR)-A(KLR)

195 INJ(KLR)-O

INJ(NURL)-I
95 INI(K)-O

.1100 NZC-IK(JP, 1)+IK(JP,2)
200 IK(JP,1)-NZC

IK(JP,2)-O
C
C UNPACK PIVOT ROW AND CONTROL DIAGONAL VALUE.

KP-IP(JP, 1)
205 KL-KP+NZC- 1

CO-E FSTOL*U



114

IF (KP.GT.KL) GO TO 102
DO 101 K-KP,KL
AA-A(K)

210 CO-AMAXI(CO,ABS(AA))
J-INJ (K)
W(J) -AA

101 CONTINUE
102 DJP-D(JP)

215 IF (DJP.GT.CO/U) GO TO 103
IFLAG-2
IF (MP.GT.0) WRITE(MP,250) JP

250 FORMAT(//44H+ WARNING MODIFICATION OF ZERO OR NEGATIVE,
i46H DIAGONAL ENTRY HAS BEEN PERFORMED IN LOCATION7)

220 D(JP)-CO
IF (CO.EQ.EPSTOL*U) D(JP)-ONE

103 IF (KP.GT.KL) GO TO 179
C
C PERFORM ROW OPERATIONS.

225 DO 170 NC-1,NZC
KC-IP(JP, 1 )+NC-1
IR-INJ (KC)
AL-A(KC)/D(JP)

C
230 C COMPRESS ROW FILE IF NECESSARY.

IF (LROW+IK(IR,i)+IK(JP,1).GT.IAJ-N) C=CMAX
IF (NURL+IK(IR,I)+IK(JP,1).LT.NUAL) GO TO 105
CALL MA3ID(A,INJ,IAJN,IK,IP, .TRUE.)

105 KR-IP(IR,1)
235 KRL-KR+IK(IR,1)-I

IF (KR.GT.KRL) GO TO 120
C
C SCAN THE OTHER ROW AND CHANGE SIGN IN IW FOR EACH COMMON
C COLUMN NUMBER.

240 DO 115 KS-KRKRL
J-INJ(KS)
IF (IW(J,2).NE.-I) GO TO 115
IW(J,2)-I
A(KS).A(KS)-AL*W(J)

245 115 CONTINUE
C
C SCAN PIVOT ROW FOR FILLS.

120 DO 165 KS-KP,KL
J-INJ(KS)

250 C
C ONLY ENTRIES IN THE UPPER TRIANGULAR PART ARE CONSIDERED.

IF (J.LT.IR) GO TO 165
IF(IW(J,2).EQ.1) GO TO 165
AA--AL*W(J)
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255 IF(IR.NE.J) GO TO 122
D(IR)-D(IR)+AA
GO TO 165

122 IF (OPTION(2).NE.0) GO TO 123
IF (FILL(IR,T)) GO TO 124

260 IF (OPTION(5).EQ.0) GO TO 165
D(J)-D(J)+AA
D(IR)-D(IR)+AA
GO TO 165

123 IF (AA*AA.GT.C*ABS(D(IR)*D(J))) GO TO 124
265 IF (OPTION(5).EQ.0) GO TO 165

D(J)=D(J)+AA
D(IR)-D(IR)+AA
GO TO 165

124 LROW-LROW+1
270 IK(IR,l)=IK(IR,1)+

C IF POSSIBLE PLACE THE NEW ELEMENT NEXT TO THE PRESENT ENTRY.
C
C
C TRY IF THERE IS ROOM AT THE END OF THE ENTRY.

275 IF (KR.GT.KRL) GO TO 130
IF (KRL.EQ.IAJ) GO TO 125
IF (INJ(KRL+1).NE.O) GO TO 125
KRL=KRL+1
INJ(KRL)-J

280 A(KRL)-AA
GO TO 133

C
C TRY IF THERE IS ROOM AHEAD OF PRESENT ENTRY.

125 IF (KR.NE.NUAL) GO TO 126
285 NUAL-NUAL-1

GO TO 127
126 IF (INJ(KR-1).NE.0) GO TO 128
127 KR-KR-1

IP(IR,1)-KR
290 INJ(KR)-J

A(KR)-AA
GO TO 133

C
C NEW ENTRY HAS TO BE CREATED.

295 128 DO 129 KK-KR,KRL
NUAL-NUAL- 1
INJ(NUAL)-INJ(KK)
A(NUAL)-A(KK)

129 INJ(KK)-O
300 C

C ADD THE NEW ELEMENT.
130 NUAL-NUAL-1
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INJ (NUAL)-J
A(NUAL)-AA

305 IP(IR,I)=NUAL
KR-NUAL
KRL-KR+IK(IR, I)-1

C
C CREATE FILL IN COLUMN FILE.

310 133 NZ-IK(J,2)
K-IP(J,2)
KLI =K+NZ- i
LCOL-LCOL+1

C
315 C IF POSSIBLE PLACE NEW ELEMENT AT THE END OF PRESENT ENTRY.

IF (NZ.EQ.0) GO TO 140
IF (KL1.EQ.IAI) GO TO 137
IF (INI(KL1+1).NE.0) GO TO 137
INI(KLI+I)-IR

320 GO TO 160

C IF POSSIBLE PLACE ELEMENT AHEAD OF PRESENT ENTRY.
137 IF (K.NE.NUCL) GO TO 138

IF (NUCL.EQ.1) GO TO 140
325 NUCL-NUCL-1

GO TO 139
138 IF (INI(K-1).NE.0) GO TO 140
139 K=K-1

INI(K)-IR
330 IP(J,2)-K

GO TO 160
C
C NEW ENTRY HAS TO BE CREATED.

140 IF (NZ+I.LT.NUCL) GO TO 145
335 C

C COMPRESS COLUMN FILE IF THERE IS NOT ROOM FOR NEW ENTRY.

IF (LCOL+NZ+2.GE.IAI) C=CMAX
CALL MA31D(A,INI,IAI,NIK(1,2),IP(1,2),.FALSE.)
K-IP(J,2)

340 KLI-K-NZ-1
C
C TRANSFER OLD ENTRY INTO NEW.

145 IF (K.GT.KL1) GO TO 155
DO 150 KK-K,KL1

345 NUCL-NUCL-1
INI(NUCL)-INI(KK)

150 INI(KK)-O
C
C ADD THE NEW ELEMENT.

350 155 NUCL-NUCL-l
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INI CNUCL)-IR
IP(J, 2)-NUCL

160 IK(J,2)-NZ+l
165 IWCJ,2)=-1

355 170 CONTINUE
C
C UPDATE ORDERING ARRAYS-

DO 172 K-KP,KL
J-INJ(K)

360 W(j)-O.
A(K)-A(K) /D(JP)
IF (OPTION(1).EQ.O) GO TO 171
NZ-IK(J, 1)+IK(J,2)+l
IN=IK(NZ,3)

365 IW(J,2).mIN
IW(J, 1)-O
IK(NZ,3)=J
IF (IN.NE.O) IW(IN,1)=J
GO TO 172

370 171 IW(J,2)-J+1
IW(J, 1)=J-1

172 CONTINUE
IF (OPTION(l).EQ.O) IW(N,2)=O
MCL-MAXO (MCL, LCOL)

375 PIVT-FLOAT(IIP) /FLOATCN)
C
C GIVE WARNING IF AVAILABLE SPACE IS USED TOO EARLY.

IF (C.NE.CMAX) GO TO 175
IF CIPD.LT.IIP) GO TO 179

380 IPD-IIP
IF CPIVT .GT. .9) GO TO 179
IFLAG-4
IF (MP.GT.O) WRITE(MP,260) lIP
GO TO 179

385 260 FORMAT(//44H+WARNING AVAILABLE SPACE USED AT PIVOT STEP,17)
C
C CHANGE C IF NECESSARY.

175 IF (.NOT. CHANGE) GO TO 179
PFILL-FLOATCLROW-NZO) /FLOAT(NFILL)

390 IF CPIVT.GT.O.9) GO TO 179
IF (PFILL.LT.ALFA*PIVE+B1) GO TO 176
IF (PFILL.LT.ALFA*PIVT+B2) GO TO 179
C..2.25*C

176 ALFA-(1.O-PFILL)/CO.9-PIVT)
395 BI mPFILL-PI VT*ALFA-O .03

B2-B 1+0.06
C
C IF THE MATRIX IS FULL THEN STOP THE SPARSE ANALYZE.
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179 NR-N-IIP
400 LFULL-NR* (NR- 1)/2

LFULDD-IFIX(DD*FLOAT(LFULL))
IF (LCOL.GE.LFULDD.AND.NURL+LFULL.LT.IAJ) GO TO 185

180 CONTINUE
C

405 C
C ELIMINATION LOOP TERMINATES
C AFTER DEVIATION WE FACTORIZE THE REMAINING FULL MATRIX.

185 IPD-IIP
C-SQRT(C)

410 LCOL-MCL
IF (.NOT. CHANGE) C=-C

C
C THE ORDER OF THE FULL MATRIX IS NR.
C LOOP THROUGH ROWS IN THE ACTIVE MATRIX AND STORE

415 C ROW NUMBERS IN INI.
KK-O
DO 197 I-1,NR
JP-IK(I,3)

194 IF (JP)196,196,195

420 195 KKKK+i
INI(KK)-JP
JP",IW(JP,2)
GO TO 194

196 IF (KK.EQ.NR) GO TO 198
425 197 CONTINUE

C
C MAKE A SORT OF ROWNUMBERS IN INI.

198 IF (NR.EQ.1) GO TO 200
NRMl-NR-1

430 DO 199 I=1,NRMI
Jl-I+l
DO 199 J-JI,NR

IF (INI(J).GT.INI(I)) GO TO 199
JJ-INI(I)

435 INI(1)-INI(J)
INI (J)=JJ

199 CONTINUE
200 DO 201 I-l,NR

IIaINI(I)
440 201 IW(Il,1)--(IPD+I)

C
C MAKE AN ORDERED LIST OF THE PIVOTS.

DO 202 I-1,N
IR--IW(I, 1)

445 202 IK(IR,2)-I
C
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C MOVE FULL MATRIX TO THE FRONTr AND ORDER.
IPDPl-IPD-1
NmiuN- 1

450 IF (IPDP1.GT.NM1) GO TO 245
DO 215 IIP-IPDPINM1
JP-IK(IIP,2)
IP-IP(JP,l)
KL-KP+IK(JP, 1)-i

455 C
C MOVE ROW JP TO W.

IF (KP.GT.KL) GO TO 204
DO 203 K-KP,KL
J-INJ(K)

460 INJ(K)-O
203 I(J)-A(O)

C
C COMPRESS FILE IF NECESSARY.
204 IF(NUIRL+N-IIP.LT.NUAL) GO TO 205

465 CALL MA31D(A,I.NJ,IAJ,N,IKIP, .TRUE.)
205 IP(JP,1)-NURL+l

IK(JP, I)-N-IIP
C
C MOVE ROWS AND COLUMN INDICES INTO PIVOTAL ORDER.

470 IIPPI-IIP+1
DO 210 I-IIPP1,N
J-IKCI,2)

ACNURL) -W (3)
475 INJ(NURL)-J

210 W(J)-ZERO
215 CONTINUE

LROW-NURL
C

480 C FACTORIZE THE FULL MATRIX.
DO 240 IIP-IPDPl,NM1
JP-IK(IIP,2)
ICPI-IP(JP, 1)

485 IF (IPI.EQ.N) GO TO 235
C
C LOOP THROUGH THE OTHER ROW

DO 230 J-IPI,NMI
JJ-IKCJ,2)

490 KPJ-IP(JJ,l)
KLJ.'KPJ+IKG.TJ, 1)-I
AL"'A(KPI)/D(JP)
D(JJ)mD (JJ)-AL*A(KPI)
KK-KPI+I
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495 DO 220 K-KPJ,KLJ
A(K)-A(K)-AL*A(KK)

220 KK-KK+I
C
C STORE FACTOR AND PROCEED TO NEXT ROW.

500 A(KPI)-AL
KPI-KPI+1

230 CONTINUE
C
C MODIFY LAST DIAGONAL ENTRY

505 235 JJ-IK(N,2)
AL-A(KPI)/D(JP)
D(JJ)-D(JJ)-AL*A(KPI)
A(KPI)-AL

240 CONTINUE
510 245 CONTINUE

RETURN
END

LOGICAL FUNCTION FILL(I,J)
C
C FILLI
C

5 C

C USED WHEN NO FILL-INS ARE TO BE KEPT
C

FILL-.FALSE.
RETURN

10 END

LOGICAL FUNCTION FILL(I,J)
C

C FILL2
C

5 C
C ALLOWS ONE DIAGONAL OF FILL-INS TO BE KEPT
C ADJACENT TO THE OUTER DIAGONAL.

.1 C
FILL-. FALSE.

10 IF (IABS(J-I).GE.7) FILL-.TRUE.
RETURN
END
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LOGICAL FUNCTION FILL(I,J)
C
C FILL3
C-----

5 C
C ALLOWS THREE DIAGONAL OF FILL-INS TO BE KEPT.
C ONE ADJACENT TO THE INNER DIAGONAL AND TWO
C ADJACENT TO THE OUTER DIAGONAL.
C

10 FILL-.FALSE.
ID-lIABS (J-I)
IF ((ID.LE.2).OR.(ID.GE.6)) FILL-.TRUE.
RETURN
END

SUBROUTINE SOLVE(NN,NZ,A,INI,INJ,IAI,IAJ,W,IK,B,W1)
C
C SUBROUTINE WHICH SOLVES THE LINEAR SYSTEM USING
C HARWELL'S PRECONDITIONED CONJUGATE GRADIENT

5 C ROUTINE MA31F.
C
C INPUT PARAMETERS
C----------------
C

10 C NN - ORDER OF MATRIX A.
C NZ - NUMBER OF NON-ZERO ELEMENTS IN THE UPPER
C TRIANGULAT PORTION OF MATRIX A.
C A - ARRAY OF LENGTH IAJ CONTAINING THE NON-ZERO
C OFF-DIAGONAL ELEMENTS OF THE UPPER TRIANGULAR

15 C PORTION OF MATRIX A IN THE FIRST NZ LOCATIONS
C IN ROW ORDER. LOCATIONS NZ+1,...,NZ+LROW
C CONTAIN THE NON-ZERO OFF-DIAGONAL ELEMENTS
C OF THE UPPER TRIANGULAR PORTION OF THE
C PRECONDITIONING MATRIX C IN ROW ORDER.

20 C INJ - ARRAY OF LENGTH IAJ CONTAINING THE COLUMN
C INDICES OF THE CORRESPONDING ENTRY IN ARRAY A.
C (IE. INJ(K) CONTAINS THE COLUMN INDICE FOR
C ENTRY A(K), K1i,...,NZ+LROW).
C INI - ARRAY OF LENGTH NZ CONTAINING THE ROW INDICES

25 C OF THE CORRESPONDING ENTRY IN ARRAY A.
C (IE. INI(K) CONTAINS THE ROW INDICE FOR
C ENTRY A(K), K-1,...,NZ).
C IAJ - SIZE OF ARRAYS INJ AND A.
C B - CONTAINS THE RIGHTHAND SIDE OF THE SYSTEM.

30 C W - ARRAY OF LENGTH 3*NN IN WHICH LOCATIONS
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C 1,...,NN CONTAIN THE DIAGONAL ELEMENTS OF

C MATRIX A AND LOCATIONS NN+1,...,2*NN CONTAIN
C THE INVERSE OF THE DIAGONAL ELEMENTS OF MATRIX C.

C THE REMAINING NN LOCATIONS ARE WORK SPACE.
35 C W1 - ARRAY OF LENGTH 3*NN USED AS WORK SPACE.

C
C OUTPUT PARAMETERS

C----------------
C

40 C B - THE SOLUTION VECTOR
C
C COMMON BLOCK PARAMETERS
C------------------------
C

45 C LCOL,NCP,IPD,DD - NOT USED
C LROW - NUMBER OF NON-ZERO ELEMENTS IN UPPER
C TRIANGULAR PORTION OF THE PRECONDITIONING

C MATRIX C.
C ND - ORDER OF MATRIX A AND C.

50 C LP - OUTPUT FILE DEVICE NUMBER.
C MP - MESSAGE FILE DEVICE NUMBER.
C HITS - MAXIMUM NUMBER OF ITERATIONS TO BE ATTEMPTED.
C EPSI - DESIRED ACCURACY OF !IR!!
C

55 C INTERNAL VARIABLES
C-------------------
C
C NITER - ON ENTRY TO MA31F IT CONTAINS THE MAXIMUM
C NUMBER OF ITERATION TO BE ATTEMPTED. ON

60 C RETURN FROM MA31F IT CONTAINS THE NUMBER

C OF ITERATIONS PERFORMED.
C EPS - ON ENTRY TO MA31F, EPS(1) CONTAINS THE

C DESIRED ACCURACY FOR M!R!. ON RETURN,

C EPS(I) CONTAINS THE VALUE OF !!R!l AFTER

65 C ITERATION I-I.
C

REAL A(IAJ),W(NN,3),WI(NN,3),EPS(150),B(NN)
INTEGER INI(IAI),INJ(IAJ),IK(NN,2)

C

70 COMMON/MA31N/MITS,EPS1
COMMON/MA311/DD,LP,MP
COMMON/MA3 iJ/LROW,LCOL,NCP, ND, IPD

C

WRITE(MP, 5)

75 5 FORMAT(12H START SOLVE)
IAJ IIAJ-NZ
NZ1-NZ+I

C
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WRITE(LP ,292)
80 292 FORMAT(3HORESULTS OF PRECONDITIONED CG ROUTINE)

IFLAG-0
NITER-HITS
EPS(1)-EPSl

C
85 CALL SECOND(STRTIM)

C
CALL KA31F(ND,NZ,A,W,INI,INJ,IAJI,A(NZI),W(1,2),
IINJCNZ1),IK,B,W(1,3),WI,Wl(1,2),Wl(1,3),
2NITER,EPS)

*90 C
CALL SECOND(STPTIM)

C
NITERI -NITER+1
IF (EPS(NITER1).LE.EPS1) GO TO 300

95 WRITE(LP,295) NITER
295 FORMAT(20H0--WARNING MORE THAN,17,2X,

*47HITERATIONS REQUIRED TO OBTAIN DESIRED ACCURACY.)
IFLAC- 3

C
100 300 WRITE(LP,301) IFLAG

301 FORMAT(2OHOAFTER MA31F IFLAG - J12)
WRITE(LP, 305) NITER,EPS(NITER1)

305 FORMAT(18HONUM ITERATIONS - ,13,2X,
*19HNORM OF RESIDUAL - ,E13.5)

105 RTIME-STPTIM-STRTIM
WRITE(LP,310) RTIME

310 FORMAT(12HORUN TIME - ,F7.3,4H SEC)
WRITE(LP, 330)

330 FORMAT(38HONORM OF RESIDUAL AFTER EACH ITERATION)
110 DO 340 I-1,NITER1

WRITE(LP,335) (I-1),EPS(I)
335 FORMAT(lH ,13,2X,E13.5)
340 CONTINUE
C

115 500 CONTINUE
RETURN
END
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SUBROUTINE MA3IF(NNZA,D,INI,INJ,IAF,AF,DF,INJF,IK, B,R,
I E,F,G,KMAX,EPS)

C
C MA31F IS PART OF THE HARWELL MA31 PACKAGE.

5 C IT HAS BEEN MODIFIED TO:
C 1) HANDLE ADDED PARAMETER TO MA31H CALLING SEQUENCE
C 2) SAVE THE RESULTING RESIDUAL EACH ITERATION
C 3) USE A RANDOM STARTING VECTOR.
C SEE ROUTINE MA31A FOR DETAILS.

10 C
REAL AF(IAF),DF(N),A(NZ),B(N),R(N),E(N),F(N),G(N),L,D(N)
REAL EPS(KMAX)
INTEGER INJF(IAF),INI(NZ),INJ(NZ),IK(N,2)
DATA ZERO/0.0/

15 C
C THIS SUBROUTINE PERFORMS THE ITERATIVE PROCEDURE.
C THE PRECONDITIONED CONJUGATE GRADIENT METHOD IS USED.

DO-ZERO
EPSI-EPS(I )**2

20 C
C COMPUTE THE INITIAL SOLUTION.

DO 10 I-1,N
10 E(I)-RANF(I)*2.0

CALL MA3IG(N,AF,INJF,IAF,DF,IK,E)
25 C

C COMPUTE THE RESIDUALS AND INSERT THE INITIAL SOLUTION IN B.
CALL MA31H(A,D,INI,INJ,NZ,N,E,R)
Ri-ZERO
DO 20 I-I,N

30 R(I)-R(I)-B(I)
RI=RI+R(I)**2
G(I)-R(I)

20 B(I)-E(I)
KITR-O

35 EPS(1)-SQRT(RI)
IF (RI.LT.EPSI) GO TO 75

C
C INITIALIZE E AND G.

CALL MA3G(N,AF,INJFIAF,DF,IK,G)
40 DO 30 I-1,N

._., E(I)--G(I)

30 DO-DO+R(I)*G(1)
C
C START ITERATION LOOP

45 35 KITR-KITR+i
CALL MA31H(A,D,INI,INJ,NZ,N,E,F)
L-ZERO
DO 40 I-1,N

kI
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40 L-L+E(I)*F(I)
50 L-DO/L

C
C AJUST B,G AND R.

Ri-ZERO
DO 50 I-1,N

55 B(I)-B(I)+L*E(I)
R(I)-R(I)+L*F(I)
R1-Rl+R(I)*R(I)

50 G(I)-R(I)
EPS(KITR+I )-SQRT(RI)

60 C
C CONTROL THE RESIDUAL.

IF (RI.LE.EPSI .OR. KITR.GE.(KMAX-1)) GO TO 75

C
C PROCEED ITERATION

65 CALL MA31G(N,AP,INJF,IAF,DF,IK,G)
D 1-ZERO
DO 60 I-i,N

60 Dl-R(I)*G(I)+D1
BB-Dl/DO

70 DO-DI
DO 70 I-1,N

70 E(I)--G(I)+BB*E(I)
GO TO 35

C
75 C ITERATION LOOP TERMINATES.

75 KMAX-KITR
RETURN
END

SUBROUTINE MA33I(A,D,INI,INJ,NZ,N,B,Z)

C

5 REAL A(NZ),D(N),B(N),Z(N)
INTEGER INI(NZ),INJ(NZ)

C
C THIS SUBROUTINE CALCULATES THE INNER PRODUCT OF A MATRIX

C A AND A VECTOR B AND THE RESULT IS RETURNED IN VECTOR Z.

10 C THE DIAGONAL ENTRIES OF MATRIX A ARE CONTAINED IN D.

C
C INITIALIZE A.
C

DO 10 I-1,N
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15 DO 10 I-1,N
10 Z(I)-B(I)*D(I)

C
C LOOP OVER THE NON-ZEROES IN A.
C

20 IF (NZ.LE.O) GO TO 100
DO 90 K-1,NZ
I-INI(K)
JINJ(K)
Z(I)=Z(I)+A(K)*B(J)

25 90 Z(J)-Z(J)+A(K)*B(I)
100 RETURN

END

PROGRAM PROG2(INPUT,OUTPUT,DATA,TAPE4=INPUT,TAPE6-DATA,

*TAPESOUTPUT)

C
C PROGRAM TO CALCULATE THE EIGENVALUES OF OUR

5 C SYMMETRICALLY PRECONDITIONED COEFFICENT MATRIX
C USING THE HARWELL EAI4A LANCZOS ALGORITHM.
C
C SUBROUTINE GENA AND FACTOR
C--------------------------

10 C SEE PROGI FOR DESCRIPTION
C
C SUBROUTINE GETEIG
C------------------
C SUBROUTINE WHICH CALLS SUBROUTINE EA14A TO CALCULATE

15 C THE DESIRED EIGENVALUES.
C MITE - MAXIMUM NUMBER OF ITERATIONS TO BE ATTEMPTED
C ACC - DESIRED ACCURACY OF RESULTING EIGENVALUES
C EL,ER - SEARCH INTERVAL
C

20 C SEE INDIVIDUAL SUBROUTINES FOR MORE DETAILS.
C

REAL A(650),B(64),W(64,3)
INTEGER INI(200),INJ(650),IK(64,4),IW(64,4),OPTION(6)

C
25 COMMON/MA31I/DD,LP,MP

COMMON/MA31J/LROW,LCOL,NCP,ND, IPD
COMMON/MA31K/NURL, NUCL, NUAL
COMMON/MCOMM3 /OPTION
COMMON/MA3 iN/MITE, ACC,EL, ER

30 COMMON/MA3IL/EPSTOL,U
COMMON/MA3 IM/NI ,NJ, NVERSN,NTYPE
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C
EXTERNAL FILL, EUSE

C

35 DATA DD,LP,MP/1.0,6,5/

DATA EPSTOLU/2.OE-6,1.0E2/
DATA IAIIAJ,NN/200,650,64/
DATA MITEACC,EL,ER/600,1.OE-4,1.0,0.0/
DATA NI,NJ/8,8/

40 C
ND-NN

C
C GET PARAMETERS DETAILING TYPE OF
C PRECONDITIONING METHOD TO USE.

45 C
READ(4, *) NTYPE,NVERSN
READ(4,*) (OPTION(I),Iil,6)
READ(4,*) C

C
50 CALL GENA(NN,NZ,A,INI,INJIAI,IAJ,W,B,IK,IW)

C
IF (OPTION(6).EQ.1) GO TO 5

C
C PERFORM THE DESIRED FACTORIZATION

55 C
CALL FACTOR(NN,NZ,A,INI,INJ,IAI,IAJ,IK,IW,W,C,FILL,EUSE)
GO TO 15

5 CONTINUE
C

60 C NO PRECONDITIONING REQUESTED
C GENERATE IDENTITY MATRIXc

LROW-0

DO 10 I-I,NN
65 IK(Il)-o

IK(I,2)-
W(I,2)-1.0

10 CONTINUE
15 CONTINUE

70 C
C CALCULATE THE EIGENVALUES OF THE PRECONDITIONED MATRIX
C

CALL GETEIG(NN,NZ,A,INIINJ, IAI, IAJ,W,IK, B)

75 END
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SUBROUTINE GETEIG(NN,NZ,A,INI,INJ,IAI,IAJ,W,IK)
C
C SUBROUTINE TO CALCULATE ALL THE EIGENVALUES OF
C OUR SYMMETRICALLY PRECONDITIONED INPUT MATRIX

5 C USING THE HARWELL EAI4A LANCZOS ALGORITHM.
C SEE SUBROUTINE SOLVE FOR DESCRIPTION OF INPUT PARAMETERS.
C

REAL A(IAJ),W(NN,3)
REAL EIG(1024),U(1024),V(1024),Tl(1024),T2(1024)

10 REAL X(3000),DEL(3000),ALFA(5000),BETA(5000)
INTEGER INI(IAI) ,INJ(IAJ) ,IK(NN,4)
INTEGER NU(3000)

C
COMMON/EA 4BD/PRVT(4),IPRVT(6)

15 COMMON/MA31I/DD,LP,MP
COMMON/MA31J/LROW,LCOL,NCP,ND, IPD
COMMON/MA31N/MITE,ACC, EL, ER

C
DATA LEIG,LX,LALFA/1024, 3000, 5000/

20 C
NZ1-NZ+l
IAJ1 -IAJ-NZ
IFLAG--1

C
25 C A MAXIMUM OF MITE ITERATIONS ARE ATTEMPTED TO

C ACQUIRE ALL EIGENVALUES IN THE INTERVAL EL TO ER
C TO AN ACCURACY OF ACC.
C

DO 30 ITER-1,MITE
30 C

CALL EAI4AD(NN,EL,ER,ACC,LEIG,LX,LALFA,LP,IFLAG,
*U,V,EIG,NEIG,X,DEL,NU,ALFA,BETA)

C
IF (IFLAG.EQ.O) GO TO 200

35 IF (IFIAG.GT.1) GO TO 100
C
C CALCULATES VECTOR U - VECTOR U + MATRIX A' TIMES VECTOR V,
C WHERE MATRIX A' IS THE RESULT OF SYMMETRICALLY
C PRECONDITIONING MATRIX A BY MATRIX C.

40 C
CALL MA3IG2(NN,A(NZ1),INJ(NZ1),IAJI,W(1,2),IK,V,TI)
CALL MA31H(A,W,INI,INJ,NZ,NN,T1,T2)
CALL MA3IGI(NN,A(NZI),INJ(NZI),IAJI,W(I,2),IK,T2)

C
45 DO 20 I=1,NN

U(I)-U(I) + T2(I)
20 CONTINUE
C
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30 CONTINUE
50 GO TO 180

C
C EA14AD IS SIGNALING FAILURE
C
100 WRITE(LP,11O) IFLAG

55 WRITE(MP,11O) IFLAG
110 FORMAT(26HOEA14AD HAS FAILED. IFLAG-,I2)

GO TO 290
C
C EA14A COULDN'T FINISH IN THE REQUESTED

60 C NUMBER OF ITERATIONS.
C
180 WRITECLP,185) MITE

WRITE(MP,185) MITE

185 FORMAT(39H0--WARNING ALL EIGENVALUES NOT FOUND IN,
65 *13,2X,10HITERATIONS)

ITER-MITE
C
C OUTPUT DATA ON THE CALCULATED EIGENVALUES
C

70 200 CONTINUE
WRITE(LP,205) PRVTC1)

205 FORMAT(19HC)SPECTRAL RADIUS = E14.7)
WRITE(LP, 215)

215 FORMAT(OORODATA ON RESULTING ElhENVALUES)
75 WRITE(LP,220) ITER,ACC

220 FORMAT(8H ITER - ,13,2X,6HACC - E13.5)
WRITE(LP,230) NEIG

230 FORMAT(28H NUM DISTINCT EIGENVALUES - J13)
C

80 DO 235 I=1,NEIG
235 EIG(I)=EIG(I)-1.O

C
WRITE(LP, 240)

240 FORMAT(25HOSTATISTICS ON EIGCI-1.O)
*185 C

CALL DSCPPT(NEIG,1,O,EIG,XM4N,STDV,VAR,SKW,XKT,
*0,0,0,5, LP)
CALL DSCRP2(NEIG,1,1,O,O,EIG,EIG,XMED,XMIN,XM,

*RN~GE,LP)

90 C
290 CONTINUE

RETURN
END
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SUBROUTINE MA31GI(N,A,INJ,IAJ,D,IK,B)
C
C SUBROUTINE TO SOLVE A SYSTEM OF EQUATIONS
C (L TRANSPOSE) (SQRT D) T - B

5 C BY BACKWARD SUBSTITUTION. RESULT IS RETURNED
C IN VECTOR B. BASED ON HARWELL ROUTINE MA31G.
C REMINDER, ARRAY A CONTAINS L TRANSPOSE.
C SEE MA31G FOR DESCRIPTION OF VARIABLES.
C

10 INTEGER INJ(IAJ),IK(N,2)
REAL A(IAJ),D(N),B(N)

C
KP= 1

C
15 DO 25 IIP=1,N

IC=IK(IIP,2)
KL-KP+IK(IC,1)-1
BIC-B(IC)
IF (KP.GT.KL) GO TO 20

20 DO 15 K=KP,KL
IR-INJ(K)

15 B(IR)=B(IR)-A(K)*BIC

20 KP=KL+l
25 CONTINUE

25 C
DO 30 I-1,N
B (I).B (I)/SQRT (D ())

30 CONTINUE
C

30 RETURN
END

SUBROUTINE MA3lG2(N,A,INJ,IAJ,D,IK,B,T)
C
C SUBROUTINE TO SOLVE A SYSTEM OF EQUATIONS
C (SQRT D)(L) T - B

5 C BY FORWARD SUBSTITUTION. BASED ON THE HARWELL
C ROUTINE MA31G. SEE MA31G FOR DESCRIPTION OF
C VARIABLES.
C REMINDER, ARRAY A CONTAINS L TRANSPOSE.
C

10 INTEGER INJ(IAJ),IK(N,2)
REAL A(IAJ),D(N),B(N),T(N)
COMMON/MA31J/LROW,LCOL,NCP,ND, IPD

C
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KL-LROW
15 C

0O 10 1-1,N
10 T(I)-B(I)/SQRT(D(I))

C
Do 30 IPI-1,N

20 'tIP-N+1-TPI
IR-IK(IIP,2)
BIR-0 .0
KPUoKL-I.K(IR,1 )+1
IF (KP.GT.KL) Go TO 25

25 DO 20 K-KPKL
IC-INJ (K)

20 BIRaBIR-A(K,)*T(IC)
25 T(IR)-T(IR)+BIR

KL-KP- 1

*30 30 CONTINUE
C

RETURN
END
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PROGRAM PROGIA(OUTPUT,DATA, TAPESOUTPUT,TAPE6-DATA)
C
C DRIVER PROGRAM USED DURING PHASE III.
C DESIGNED TO SOLVE THE TEST PROBLEMS USING:

5 C A) POINT RED/BLACK GRID POINT ORDERING SCHEME
C (NTYPE-2)
C B) INCOMPLETE CHOLESKY FACTORIZATION W1 0 DIAGONALS
C ADDED AS PERFORMED BY SUBROUTINE ICCGO.
C THE FOLLOWING PROGRAM CHANGES ARE REQUIRED BY THE

10 C VARIOUS TEST PROBLEMS:
C 1) TEST PROBLEM 1 (GENAl)
C NVERSN = 1 NI = 32 NJ = 32
C ND = 1024
C USE DIMENSIONS

15 C B(1024), W(1024,3), W1(1024,3), IK(1024,2)
C AND IW(1024)
C 2) TEST PROBLEM 2 (GENA2)
C NVERSN - 2 NI - 32 NJ - 31
C ND - 992

20 C USE DIMENSIONS
C B(992), W(992,3), Wl(992,3), IK(992,2)
C AND IW(992)
C 3) TEST PROBLEM 3 (GENA3)
C NVERSN = 3

25 C EVERYTHING ELSE AS PER PROBLEM 2
C SEE PROGRAMS PROGI, GENA, ICCGO AND SOLVE FOR MORE

* C DETAILS.
C

REAL A(5000),B(1024),W(1024,3),Wl(1024,3)
30 INTEGER INI(2000),INJ(5000),IK(1024,2),IW(1024)

COMMON/MA31J/LROW,LCOL,NCP,ND,IPD
COMMON/MA31N/MITS,EPSI
COMMON/MA31L/EPSTOL,U

35 COMMON/MA311/DD,LP,MP
COMMON/MA31M/NI,NJ,NVERSN,NTYPE

C
DATA U,EPSTOL/1.0E2,2.OE-6/
DATA MITS,EPSI/100,1.OE-6/

40 DATA IAI,IAJ,ND/2000,5000,1024/
DATA DD,LP,MP/1.0,6,5/
DATA NI,NJ/32,32/
DATA NVERSN,NTYPE/l,2/

C
45 CALL GENA(ND,NZ,A,INI,INJ,IAI,IAJ,W,B,IK,IW)

NZI=NZ+1
CALL ICCGO(ND,NZ,A,INI,INJ,A(NZI),INJ(NZI),IK,
*IW,W(1,1),W(l,2))

• -- I , sI I I I4
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IAJ2-NZ+LROW
50 CALL SOLVE(ND,NZ,A,INI,INJ,NZ,IAJ2,W,IK,B,W)

C
END

PROGRAM PROGIB(OUTPUT,DATA,TAPE5-OUTPUT,TAPE6-DATA)
C
C DRIVER PROGRAM USED DURING PHASE III.
C DESIGNED TO SOLVE THE TEST PROBLEMS USING

5 C A) LINE RED/BLACK GRID POINT ORDERING SCHEME
C (NTYPE -1)
C B) CHOLES(Y FACTORIZATION OF THE BLOCK TRIDIAGONAL
C PORTION OF MATRIX A, AS PERFORMED BY SUBROUTINE EDIAG.
C SEE PROGIA FOR PROGRAM SET-UP ASSOCIATED WITH EACH OF

10 C THE TEST PROBLEMS.
C SEE PROGi, GENA, BDIAG AND SOLVE FOR MORE DETAILS.
C

REAL A(5000),B(992),W(992,3),W1(992,3)
INTEGER INI(2000),INJ(5000),IK(992,2),IW(992)

15 C
COMMON/MA3 1J/LROW,LCOL,NCP,ND, IPD
COMMON/MA.3 N/MITS ,EPS1
COMMON/HAS IL/EPSTOL, U
COHMON/MA3 1I/DD,LP,MP

20 COMM4ON/MA31M/NI,NJ,NVERSN,NTYPE
C

DATA U, EPSTOL/1 . E2, 2. OE-6/
DATA MITS,EPS1/150,1.OE-6/
DATA IAI,I.AJ,ND/2000, 5000,992/

25 DATA DD,LP,MP/1.O,6,5/
DATA NI,NJ/32,31/
DATA NVERSN,NTYPE/2,1/

C
30 CALL GENA(ND,NZ,A,INI,INJ,IAI,IAJ,W,B,IK,IW)
30 NZ1-NZ+l

CALL BDIAG(ND,NZ,A,INI,INJ,A(NZI),INJ(NZ1),IK,
*IW,W(1,l),W(1,2))
IAJ 2-NZ+LROW
CALL SOLVE(ND,NZ,A,INIINJ,NZ,IAJ2,W,IK,B,W1)

35 C
END
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PROGRAM PROG 1C (OUTPUT, DATA, TAPE5 -OUTPUT, TAPE6 -DATA)
C
C DRIVER PROGRAM USED DURING PHASE III.
C DESIGNED TO SOLVE TEH TEST PROBLEMS USING

5 C A) 2 LINE RED/BLACK GRID POINT ORDERING SCHEME
C (NTYPE - 3)
C B) REDUCED BLOCK INCOMPLETE CHOLESKY FACTORIZATION
C WITH 0 DIAGONALS ADDED AS PERFORMED BY RBICO.
C SEE PROGlA FOR PROGRAM SET-UP ASSOCIATED WITH EACH OF

10 C THE TEST PROBLEMS.
C SEE PROGi, GENA, RBICO AND SOLVE FOF MORE DETAILS.
C

REAL A(5000),B(1024),W(1024,3),W1(1024,3)
INTEGER INI(2000),INJ(5000),IK(1024,2),IW(1024)

15 C
COMMON/MA3 1J/LROW,LCOL,NCP, ND, IPD
COMMON/MA3 N/MITS, EPSi
COMMON/MA3 IL/EPSTOL, U
COMMON/MA31II/DD, LP, NP

20 COMKON/MA3 iM/NI ,NJ, NVERSN,NTYPE
C

DATA U,EPSTOL/1 .0E2,2.OE-6/
DATA MITS,EPS1/100, 1.OE-6/
DATA IAI,IAJ,ND/2000, 5000,1024/

25 DATA DD,LP,MP/1.O,6,5/
DATA NI,NJ/32,32/
DATA NVERSN,NTYPE/1,3/

C
CALL GENA(NDNZ,A,INI,INJ,IAI,IAJ,W,B,IK,IW)

30 NZI-NZ+l
NCP-NJ
CALL RBICO(ND,NZ,A,INI,INJ,ACNZ1),INJ(NZ1) ,IK,
*IW,W(1,i),W(I,2))
IAJ 2-N Z+LROW

35 CALL SOLVECND,NZ,A,INI,INJ,NZ,IAJ2,W,IK,B,W1)
C

END
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PROGRAM PROG1D(OUTPUT,DATA,TAPE5-OrJTPUT,TAPE6-DATA)
C
C DRIVER PROGRAM USED DURING PHASE III.
C DESIGNED TO SOLVE THLE TEST PROBLEMS USING

5 C A) NATURAL GRID POINT ORDERING SCHEME (NTYPE -0)
C B) NO PRECONDITIONING
C SEE PROGIA FOR PROGRAM SET-UP ASSOCIATED WITH EACH OF
C THE TEST PROBLEMS.
C SEE PROGI, GENA AND SOLVE FOR MORE DETAILS.

10 C
REAL A(5000),B(1024),W(1024,3),W1(1024,3)
INTEGER INI(2000),INJ(5000),IlC(1024,2),IW(1024)

C
COMMON/MA3IJ/LROW,LCOL,NCP,ND, IPD

15 COMMON/MA31N/MITS,EPSl
COMMON/MA3 1L/EPSTOL,U
COMMON/MA31I/DD,LP,MP
COMM4ON/MA3 LM/NI ,NJ, NVERSN,NTYPE

C
20 DATA U,EPSTOL/1..0E2,2.OE-6/

DATA MITS,EPS1/100, 1.OE-6/
DATA IAI,IAJ,ND/2000, 5000,1024/
DATA DD,LP,MP/l.O,6,5/
DATA NI,NJ/32,32/

25 DATA NVERSN,NTYPE/1,0/
C

CALL GENA(ND,NZ,A,INI,INJ,IAI,IMJ,W,B,IKIW)
LROW-O
DO 10 I-1,ND

30 IX(I,1)-O
IK(I,2)-I
IJ(I,2)-l.0

10 CONTINUE

35 WRITE(LP,15)
15 FORMAT(19H NO PRECONDITIONING)

IAJ2-NZ-LROW
C CALL SOLVE(ND,NZ,A,INI,INJ,NZ,IAJ2,W,IK,B,WI)

'140 END
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SUBROUTINE GENA(NN,NZ,A,INI,INJ,IAI,IAJ,D,B,IK,IW)
C

C
5 C GENA2

C - -

C
C PERFORMS THE DISCRETIZATION OF MODEL PROBLEM 2.
C SEE GENAl FOR DESCRIPTION OF VARIABLES.

10 C

C
REAL A(IAJ) ,B(NN) ,D(NN) ,ATYPE(4)
INTEGER INI(IAI),INJ(IAJ),IK(NN,2),IW(NN)

15 C
COMMON/MA3 LJ/LROW ,LCOL,NCP, ND, IPD
COMMON/MA31I/DD,LP,MP
COMMON/MA3 IM/NI,NJ, NVERSN,NTYPE

C
20 DATA ATYPE/7HNATURAL,7HLINE RB,8HPOINT RB,8H2LINE RB!

WRITE(MP ,2)

2 FORMAT(11H GENA START)
C

DO 5 I-1,ND
25 IKCI,l)-O

IK(1,2)-O
IW( I )-O

5 CONTINUE
C

30 CALL TIME(AT)
CALL DATE(AD)
CALL SECOND(TIM1)

C
NNATD.0

35 NZ-0
C

DO 100 I-1,NII DO 90 J-1,NJ
NNAT-NNAT+l

40 N-NORDER(NTYPE,I,J,NNAT)
D(N)-4.0
B(N)-O.0
IF (I.EQ.1) D(N)-D(N)/2.0
IF (J.EQ.NJ) D(N).'D(N)/2.0

45 IF (I.EQ.NI) D(N)-D(N)/2.O
IF (J.NE-i) GO TO 10
B(N)-1.0
IF ((I.EQ.1).OR.(I.EQ.NI)) B(N)-0.5
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S10 CONTINUE
50 C

C CALCULATE INNER DIAGONAL
C

IF (J.EQ.NJ) GO TO 20
NZ-NZ+1

55 A(NZ)--1.0
IF ((I .EQ.1).OR.(I.EQ.NI)) A(NZ)--0.5
NT-NORDER(NTYPE, I, J+1, NNAT+I)
CALL ISTORE(N,NT,INI,INJ,IAI,IK,ND,NZ)

20 CONTINUE
60 C

C CALCULATE OUTER DIAGONAL
C

IF (I.EQ.NI) GO TO 90
NZ-NZ+ 1

65 A(NZ)--1.0
IF (J.EQ.NJ) A(NZ)--0.5
NT-NORDER(NTYPE, I+1 J, NNAT+NJ)
CALL ISTORE(N,NT,INI,INJ,AI,IK,ND,NZ)

90 CONTINUE
70 100 CONTINUE

.1 C
C INITIALIZE IW(I) TO POINT JUST BEYOND WHERE THE
C LAST COMPONENT OF ROW I WILL BE STORED
C

75 KI-1
DO 200 I-1,ND
KI',KI+IK(I, 1)

200 IW(I),.KI
C

80 C REORDER BY ROWS USING IN-PLACE SORT ALGORITHM
C

CALL MA31E(INI,INJ,NZ,IW,NDA)
C
C REINITIALIZE IW(I) TO POINT TO THE BEGINNING OF ROW I

85 C
KK-1
DO 210 IR-iND
IW(IR)-KK

21I0 KK-KK+I.K(IR,lI)

90 DO 220 IINZ
220 INI(I)-IABS(INI(I))
C

CALL SECOND(TIM2)
TIMD-TIM2-TIMI

95 C
WRITE(LP,250) TIMD

I - ___ ___ ____ ____ ___ ____ ___
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250 FORMAT(13H GENA TIME - ,F6.3,4H SEC)
WRITE(LP,260) NVERSN

260 FORMAT(11H VERSION - J12)
100 WRITE(LP,265) ATYPE(NTYPE+1)

265 FORMAT(14H MATRIX A HAS ,AlO,9H ORDERING)
WRITE(LP,270) AD,AT

270 FORMAT(18R DATE GENERATED - AlO,AlO)
WRITE(LP,280) ND,NZ

105 280 FORMAT(6H ND - ,14,6H NZ - 14)
WRITE(MP, 290)

290 FORMAT(9H GENA END)
C

RETURN
110 END

SUBROUTINE GENA(NN,NZ,A,INI,INJ,IAI,IAJ,D,B,IK,IW)
C

C
5 C GENA3

C -- -
C
C PERFORMS THE DISCRETIZATION OF MODEL PROBLEM 3.
C SEE GENAl FOR DESCRIPTION OF VARIABLES.

10 C

C
REAL A(IAJ),B(NN),D(NN),ATYPE(4)
INTEGER INICIAI),INJCIAJ),IK(NN,2),IW(NN)

15 C
COMMON/MA3 IJ/LROW,LCOL,NCP, ND, IPD
COMMON /ADATA/NT, NV,*AD,AT
COMMON/MA3 1I/DD, LP, lw
COMMON/MA3 iM/NI ,NJ,NVERSN,NTYPE

20 C
DATA ATYPE/7RNATURAL,7HLINE RB,8HPOINT RB,8H2LINE RB/
WRITE(MP,2)

.12 FORMAT(1111 GERA START)
C

25 DO 5 I-1,ND
IK(I,1)-O
IK(I,2)-O
IW(I)-O

5 CONTINUE
30 C



139

CALL TIME(AT)
CALL DATE(AD)
CALL SECOND(TIM1)

35 UNA1TuO
NZ'.0

H-1. 0/3 1.0I. RD2-H/2.O
H2m-2.O*H

40 HSQ-H~*H
C

Xin-H
XP 1--HD2

45 C DO 95 I-1,NI

C

XS1s-XpIs

50 XP1=XS1+H

X=X+R
XSQ-X*X

C
55 Y-0.0

YPl1-HD2
CYP-EXP(X*YPl)

C
DO 95 J-1,NJ

60 C
Y-Y+H

YP 1-YS 1 14
YSQ=Y*Y

65 C
NNATNNAT+ I
N-N0RDER(NTYPE,I,J,NNAT)

CI AXS-XS1SQ+YSQ94 .0
70 AXPUKPlSQ+YSQ+1.O

CYS-CYP
CYP-EXP(X*YP 1)

C
GXX-4.O*YSQ*(XSQ+YSQ+l .0)+6. 0*Y

75 GXY-XSQ*GXY+2.0*Y*(YSQ+l .0)

GXY-1.0Q 4rfXSQ* (XSQ+X) *EXP(X*Y)

GXY-EXP (XSQ*Y) *GXY
C
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D(N) -AXS+AXP+CYS+CYP+HSQ
80 B(N)-HSQ*GXY

CI IF (I.EQ.1) GO TO 25
IF (I.EQ.NI) GO TO 50

C
85 IF (J.EQ.1) GO TO 10

IF (J.NE.NJ) GO TO 15
C

D(N)-(D(N)+H2*CYP) /2.0
B(N)-(B(N)+H2*CYP*EXP(XSQ)*(1 .O+XSQ))/2.0

90 NZ=NZ+1
A(NZ)--AXP/2 .0
GO TO 20

C
10 B(N)=B(N)4,CYS

95 15 NZ-NZ+1
A(NZ)--CYP
NT-NORDER(NTYPE ,I ,J+1,NNAT+ 1)
CALL ISTORE(N,NTINI,INJ,IAI,IK,ND,NZ)
NZ-NZ+1

100 A(NZ)--AXP
20 NT=NORDE(NTYPE,I+1,J,NNAT+NJ)

CALL ISTORE(N,NT,INIINJ,IAI,IK,ND,NZ)
GO TO 95

C
105 25 D(N)-D(N)/2.O

B(N)-BCN) /2.0
IF (J.NE.1) GO TO 30
B(N)-B(N)+CYS/2.0
GO TO 35

110 C
30 IF (J.NE.NJ) GO TO 35

T1-H2*CYP/4.0
D(N)-D(N) /2.O+Tl
B(N)-B(N) /2.O+T1

115 NZ-NZ+1
A(NZ) --AXP/4 .0
Go To 40

i: 35 NZNl

120A(NZ)u-AXYP/2 .0
40 NTNORDER(NTYPE,I,+1,NNAT-J)

CALL ISTORE(N,NT,INI,INJ,IAI,IK,ND,NZ)
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GO TO 95
50 I JE.N)G O5
50ICJE.N)G O5

130 D(N)-DCN)/2.O
* B(N)-B(N)+4. O*H*Y*EXP(Y)*AXP

IF (J.EQ.1) B(N)-BCN)+CYS
B(N)-B(N) /2.0
NZ-NZI-

135 A(NZ)--CYP/2.0
NT-NORDERCNTYPE ,I, J+1,NNAT+1)
CALL ISTORECN,NT,INI,INJ,IAI,IK,ND,NZ)

* GO TO 95
C

140 55 D(N)-(D(N)+Il2*CYP)/4.O
B(N)-B(N)/4.O+H*EXP(1 .0)*(AXP+CYP)

C
*95 CONTINUE

C
145 C INITIALIZE IW(I) TO POINT JUST BEYOND WHERE THE

C LAST COMPONENT OF ROW I WILL BE STORED
C

KI- I
DO 200 I-1,ND

150 KI=KI+IK(I,1)
200 IW(I)-KI
C
C REORDER BY ROWS USING IN-PLACE SORT ALGORITHM
C

155 CALL MA31E(INI,INJ,NZ,IW,ND,A)I C REINITIALIZE IW(I) TO POINT TO THE BEGINNING OF ROW I

C
KK- 1

160 DO 210 IR-1,ND
IW( IR)-KK

210 KK-KK+IK(IR,1)
DO 220 I-1,NZ

220 INI(I)-IAIS(INI(I))
-4165 C

A CALL SECOND(TIM2)
TIMD-TIM2-TIMI

* I WRITE(LP,250) TIMD
170 250 FORMAT(13H GENA TIME - ,F6.3,4H SEC)

WRITE(LP,260) NVERSN

*260 FORMA'U'H VERSION - .12)
WRITE(LP,265) ATYPE(NTYPE+1)

265 FORMAT(14H MATRIX A HAS ,AlO,9H ORDERING)
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175 WRITE(LP,270) AD,AT
270 FORMAT(18H DATE GENERATED = ,A1O,AIO)

WRITE(LP,280) ND,NZ
280 FORMAT(6H ND - ,14,6H NZ = ,J4)

WRITE(MP,290)
180 290 FORMAT(9H GENA END)

C
RETURN
END

SUBROUTINE ICCGO(NN,NZA,A,INI,INJ,C,INJC,IK,IW,DA,DC)
C
C SUBROUTINE TO CALCULATE THE INCOMPLETE CHOLESY
C FACTORIZATION WITH ZERO FILL-IN OF THE INPUT

5 C MATRIX A.
C
C INPUT PARAMETERS
C
C

10 C NN -ORDER OF MATRIX A
C NZA - NMBER OF NON-ZERO ELEMENTS IN THE UPPER
C TRIANGULAR PORTION OF MATRIX A
C A - ARRAY CONTAINING THE NON-ZERO ELEMENTS IN THE
C UPPER TRIANGULAR PORTION OF MATRIX A IN ROW

15 C ORDER
C INI/INJ - ARRAYS CONTAINING THE ROW/COLUMN INDICES
C OF THE CORRESPONDING ENTRY IN ARRAY A.
C (IE. INI(1) AND INJ(I) CONTAIN THE ROW
C AND COLUMN INDICE FOR ENTRY A(l))

20 C IK(I,l) - CONTAINS THE NUMBER OF ELEMENTS IN
C ARRAY A BELONGING TO ROW I
C IW(I) - POINTS TO THE START OF ROW I IN ARRAY A
C DA - ARRAY CONTAINING THE DIAGONAL ELEMENTS OF
C MATRIX A

25 C
C OUTPUT PARAMETERS
C-------------------
C
C C - ARRAY CONTAINING THE NON-ZERO ELEMENTS IN THE

30 C UPPER TRIANGULAR PORTION OF THE INCOMPLETE
C CHOLESKY FACTORIZATION
C INJC - ARRAY CONTAINING THE COLUMN INDEX OF THE
C CORRESPONDING ENTRY IN ARRAY C

C DC - ARRAY CONTAINING THE DIAGONAL ELEMENTS IN
35 C THE INCOMPLETE CHOLESKY FACTORIZATION
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C IK(I,1) - NUMBER OF NON-ZERO ELEMENTS IN ROW I

C OF THE INCOMPLETE FACTORIZATION
C IK(I,2) - USED BY OTHER HARWELL ROUTINES TO

C IDENTIFY THE ORDER IN WHICH THE ROWS
40 C WERE PROCESSED. IN THIS CASE, ROWS

C PROCESSED IN NATURAL ORDER AND
C IK(I,2) = I

C
C COMMON BLOCK PARAMETERS

45 C-----------------------
C
C DD,LCOL,NCP,IPD - NOT USED
C LP - OUTPUT FILE UNIT NUMBER
C MP - MESSAGE FILE UNIT NUMBER

50 C LROW - NUMBER OF NON-ZERO ELEMENTS IN THE UPPER
C TRIANGULAR PORTION OF THE INCOMPLETE
C FACTORIZATION
C ND - ORDER OF MATRIX A

C EPSTOL - MINIMUM SIZE FOR DIAGONAL ELEMENT

55 C U - PARAMETER USED TO DETERMINE WHEN A DIAGONAL
C ELEMENT MUST BE MODIFIED TO INSURE POSITIVE
C DEFINITENESS
C

INTEGER IK(NN,2),IW(NN),INI(NZA),INJ(NZA),INJC(NZA)
60 REAL A(NZA),DA(NN),DC(NN),C(NZA)

C
COMMON/MA311/DDLP,MP
COMMON/MA31J/LROW,LCOL,NCP,ND, IPD
COMMON/MA3 IL/EPSTOL,U

65 C
CALL SECOND(TIM1 )

C
WRITE(MP, 2)

2 FORMAT(12H START ICCGO)
70 WRITE(LP,3)

3 FORMAT(26H PRECONDITIONING = ICCG(O))
C

IDC-O
CT-E PSTOL*U

75 IRC-O
C

DO 5 K-I,ND

5 DC(K)-DA(K)
C

80 DO 100 IROW-1,ND
IRS=IW(IROW)
IRE1IRS+IK(IROW,1 )-1
IK(IROW, 1 )-O

[ " - j
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IK( IROW, 2) -IROW
85 C

C DETERMINE IF DIAGONAL ELEMENT MUST BE MODIFIED
C TO PRESERVE POSITIVE DEFINITENESS
C

CO-CT
90 IF (IRS.GT.IRE) GO TO 20

DO 10 K-IRS,IRE
10 CO-AMAXI(CO,ABS(A(K)))
20 IF CDC(IROW).GT.CCO/U)) GO To 30

IDC-IDC+l
95 DC(IROW)-CO

IF (CO.EQ.CT) DC(IROW)-1.O
30 CONTINUE

C
C PROCESS ELEMENTS IN CURRENT ROW

100 C
IF (IRS.GT.IRE) GO TO 100
DO 90 IR=IRS,IRE
I-INI(IR)
J=INJ(IR)

105 IRC-IRC+l
T=AC IR)
C(IRC)-T/DC(IROW)
INJC(IRC)-J
DC(J)=DC(J )-T*CCIRC)

110 IK(IROW,1)-IKCIROW,1)+1
90 CONTINUE
C
100 CONTINUE

C
115 LROW-IRC

CALL SECOND(TIM2)
TIHD-TIM2-TIM1

C
C OUTPUT STATISTICS

120 C
WRITE(LP,11O) TIND

110 FORMATC14{ ICCGO TIME ~ F6.3,5H SECS)
WRITE(LP,120) LROW

120 FORHAT(8H LROW - ,14)

125 IF (IDC.NE.O) WRITE(LP,130) IDC
130 FORMAT(4H ** ,14,19H1 DIAGONALS MODIFIED)

WRITE(MP, 140)
140 FORMAT(10H ICCGO END)

C
130 RETURN

END
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SUBROUTINE BDIAG(NN,NZA,A,INI,INJ,C,INJC,IK,IW,DA,DC)
C
C SUBROUTINE TO CALCULATE THE CHOLESKY FACTORIZATION
C OF THE TRI-DIAGONAL PORTION OF THE INPUT MATRIX A.

5 C
C SEE SUBROUTINE ICCGO FOR DESCRIPTION OF PARAMETERS.
C

REAL A(NZA) ,DA(NN) ,DC(NN) ,C(NZA)
INTEGER IK(NN,2) ,IW(NN) ,INI(NZA) ,INJ(NZA) ,INJCCNZA)

10 C
COMMON/MA3I/DD,LP,MP
COMKON/MA3 LJ/LROW,LCOL, NCP, ND, IPD
COMMON /MA3 1L/EPSTOL,U

C
15 CALL SECOND(TIML)

C
WRITE(MP, 2)

2 FORMAT(12H START BDIAG)
WRITE(LP, 3)

20 3 FORMAT(37H PRECONDITIONING =BLOCK TRI-DIAGONAL)
C

IDC-O
CT:%EPSTOL*U
IRC-O

25 C
DO 5 K-1,ND

5 DC(K)=DA(K)
C

DO 100 IROW-1,ND
30 IRS-IW(IROJ)

IRE-IRS+IK(IROW,1 )-1
IK(IROW, 1)-O
IK(IROW,2 )-IROW

C
35 C DETERMINE IF DIAGONAL ELEMENT MUST BE MODIFIED

C TO PRESERVE POSTIVE DEFINITENESS
C

CO-CT
IF (IRS.GT.IRE) GO TO 20

40 DO 10 K-IRS,IRE
10 CO-AMAX1(CO,ABS(A(K)))
20 IF (DC(IROW).GT.(CO/U)) GO To 30

IDC-I DC+l
DCCIROW)-CO

45 IF (CO.EQ.CT) DC(IROW)-l.O
30 CONTINUE

C
C PROCESS ELEMENTS IN THE CURRENT ROW

-Jj
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C
50 IF (IRS.GT.IRE) GO TO 100

DO 90 IR-IRS,IRE
I-INI(IR)
J-INJ (IR)
IF ((J-I).GT.1) GO TO 90

55 IRC-IRC+1
Tm-A(IR)
C(IRC)-T/DC(IROW)
INJC(IRC)-J
DC(J)-DC(J)-T*C(IRC)

60 IK(IROW,1)-IK(IROW,1)+1
90 CONTINUE
100 CONTINUE

C
LROW-IRC

65 CALL SECOND(TIM2)
TIMD-TIM2-TIMI

C
C OUTPUT STATISTICS
C

70 WRITE(LP,110) TIMD
110 FORMAT(14H BDIAG TIME - ,F6.3,5H SECS)

WRITE(LP,120) LROW
120 FORMAT(8H LROW - ,14)

IF (IDC.NE.0) WRITE(LP,130) IDC
75 130 FORMAT(4H ** ,I4,19H DIAGONALS MODIFIED)

WRITE(MP, 140)
140 FORMAT(10H BDIAG END)

RETURN

80 END

SUBROUTINE RBICO(NN,NZA,A,INI,INJ,C,INJC,IKIW,DA,DC)C

C SUBROUTINE TO CALCULATE THE INCOMPLETE CHOLESKY
1 C FACTORIZATION OF THE QUINT-DIAGONAL PORTION OF

5 C THE INPUT MATRIX A. IT IS ASSUMED THAT THE
C 2 LINE RED/BLACK ORDERING OF GRID POINTS WAS
C USED IN GENERATING MATRIX A.
C
C SEE SUBROUTINE ICCGO FOR DESCRIPTION OF PARAMETERS

10 C
C NCP - DISTANCE FROM MAIN DIAGONAL TO OUTER MOST
C DIAGONAL TO BE INCLUDED IN THE INCOMPLETE
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C FACTORIZATION.
C

15 REAL A(NZA),DA(NN),DC(NN),C(NZA)

CINTEGER IK(NN,2), IW(NN) ,INI(NZA) ,INJ(NZA) .INJC(NZA)

CO14MON/MA3 11/DD,LP, HP
COMMON/MA3 1J/LROW,LCOL,NCP,ND, IPD

20 COMMON/MA3 1L/EPSTOL,U
C

CALL SECOND(TIM1)
C

WRITE(MP, 2)
25 2 FORMAT(12R START RBICO)

WRITE(LP, 3)
3 FORMAT(26R PRECONDITIONING -RBIC(0))
C

IDC-O
30 CT-EPSTOL*U

IRC-0
C

DO 5 K-1,ND
5 DC(K)-DA(K)

35 C
DO 100 IROW-1,ND
IRS-IW(IROW)
IRE-IRS+*IK(IROW, 1)-i
IKCIROW, 1)-O

40 IK(IROW,2)-IROW
C
C DETERMINE IF DIAGONAL ELEMENT MUJST BE MODIFIED

*C TO PRESERVE POSITIVE DEFINITENESS
C

45 CO-CT
IF (IRS.GT.IRE) GO TO 20
DO 10 K-IRSIRE

10 CO-&MAX1(CO,AS(A(K)))
20 IF (DC(IROW).GT.(CO/U)) GO TO 30

*50 IDC-IDC+1
j DC CIROW)-CO

IF (CO.EQ.CT) DC(IROW)-1.0
30 CONTINUE

C
55 C PROCESS ELEMENTS IN CURRENT ROW

C
IF (IRS.GT.IRE) GO TO 100
DO 90 IR-IRSIRE
I-INI(IR)

60 J-INJ(IR)
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IF ((J-I).GT.NCP) GO TO 90
IRC-IRC-1
T-A( IR)
c(IRC)-T/DC(IROW)

65 INJC(IRC)-J
DC(J )-DC(J )-T*C(IRC)
IK(IROW, 1)-IK(IROW, 1)-e-

90 CONTINUE
100 CONTINUE

70 C
LROW-IRC
CALL SECOND(T 1M2)
TIMD-TIM2-TIMI

C
75 C OUTPUT STATISTICS

C
WRITE(LP,110) TIMD

110 FORMATC14H REICO TIME ~ F6.3,5H SECS)
WRITE(LP,120) LROW

80 120 FORMAT(8R LROW - J14)
IF (IDC.NE.O) WRITE(LP,130) IDC

130 FORMAT(4H ** ,14,19R DIAGONALS MODIFIED)
WRITE(MP, 140)

140 FORMAT(OHR REICO END)
85 C

RETURN
END
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PROGRAM PROG2A(OUTPUT,DATA,TAPE5-OUTPUT ,TAPE6-DATA)
C
C DRIVER PROGRAM USED DURING PHASE III.
C DESIGNED TO FIND THE EXTREME EIGENVALUES OF THE

5 C SYMMETRICALLY PRECONDITIONED) TEST MATRICES.
C IT USES:
C A) POINT RED/BLACK GRID POINT ORDERING SCHEME (NTYPE -2)

C B) INCOMPLETE CHOLESKY FACTORIZATION WITH 0 DIAGONALS
C ADDED, AS PERFORMED BY SUBROUTINE ICCGO.

10 C SEE PROGlA FOR PROGRAM SET-UP ASSOCIATED WITH EACH OF
C THE TEST PROBLEMS.
C SEE PROG2, GENA, ICCGO AND GETEG2 FOR MORE DETAILS.
C

REAL A(5000),B(1024),W(1024,3),W1(1O24,3)
15 INTEGER INIC2000),INJ(5000),IK(1024,2),IWC1024)

C
COMMON/MA3 IJ/LROW,LCOL,NCP, ND, IPD
COMMON/MA3 1N/MITE,ACC ,EL,ER
COMMON/MA3 IL/EPSTOL,U

20 COMMON/MA3II/DD,LP,MP
COMMON/MA3 IM/NI,NJ, NVERSN,NTYPE

C
DATA U,EPSTOL/1 .0E2,2.OE-6/

DATA MITE,ACC,EL,ER/750,1.OE-2,0.O,1.2/
25 DATA IAI,IAJ,ND/2000,5000,1024/

DATA NI,NJ/32,32/
DATA NVERSN,NTYPE/1,2/

C
30 CALL GENA(ND,NZ,A,INI,INJ,IAI,IAJ,W,B,IK,IW)

N1) ,( , )

CALL TCCGO(ND,NZ,A,TNI,INJ,A(NZ1),INJ(NZ1),IK,IW,

IA.J2-NZ+LROW
35 CALL GETEG2(ND,NZ,A,INI,iNJ,Nz,IAJ2,J,IK)

C
:1 END
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PROGRAM PROG2B(OUTPUT,DATA,TAPE5-OUTPUT ,TAPE6-DATA)
C
C DRIVER PROGRAM USED DURING PHASE III.
C DESIGNED TO FIND THE EXTREME EIGENVALUES OF THE

5 C SYMMETRICALLY PRECONDTIONED TEST MATRICES.
*C IT USES:

C A) LINE RED/BLACK GRID POINT ORDERING SCHEME (NTYPE - 1)
C B) CHOLESKY FACTORIZATION OF THE BLOCK TRI-DIAGONAL PORTION
C OF MATRIX A.

10 C SEE PROGIA FOR PROGRAM SET-UP ASSOCIATED WITH EACH OF
C THE TEST PROBLEMS.
C SEE PROG2, GENA, BDIAG AND GETEG2 FOR MORE DETAILS.
C

REAL A(5000),B(1024),W(1024,3),Wl(1024,3)
15 INTEGER INI(2000),INJ(5000),IK(1024,2),IW(1024)

COMMON/MA3 IJ/LROW,LCOL, NOP, ND, IPD
COMMON/MA31N/MITE,ACC ,EL,ER
COMHON /MA3 1L/EPSTOL,U

20 COMMON/MA31I/DD,LP,MP

C COMMON/MA 1M/NI ,NJ, NVERSN,NTYPE

DATA U,EPSTOL/1 .0E2, 2.OE-6/
DATA MITE,ACC,EL,ER/750,1.OE-2,0.0,1.2/

25 DATA IAI,I.AJ,ND/2000,5000,1024/
DATA DD,LP,MP/1.0,6,5/
DATA NI,NJ/32,32/
DATA NVERSN,NTYPE/1,1/

C
30 CALL GENA(ND,NZ,A,INI,INJ,IAI,IAJ,W,B,IK,IW)

NZI -N-f-
CALL BDIAG(ND,NZA,I.NI,I.NJ, A(NZ1) ,INJ(NZ1) ,IK, 1W,
*W(l,1),W(1,2))
IAJ2-NZ+LROW

35 CALL GETEG2(ND,NZ,A,INI,INJ,NZ,IAJ2,W,IK)
C

END
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PROGRAM PROG2C(OUTPUT,DATA,TAPE5-OUTPJT,TAPE6-DATA)
C
C DRIVER PROGRAM USED DURING PHASE III.
C DESIGNED TO FIND THE EXTREME EIGENVALUES OF THE

*5 C SYMMETRICALLY PRECONDITIONED TEST MATRICES.
C IT USES:
C A) 2 LINE RED/BLACK GRID POINT ORDERING SCHEME (NTYPE -3)

C B) REDUCED BLOCK INCOMPLETE CHOLESKY FACTORIZATION WITH
C 0 DIAGONALS ADDED AS PERFORMED BY SUBROUTINE RBICO.

10 C SEE PROGIA FOR PROGRAM SET-UP ASSOCIATED WITH EACH OF THE
C TEST PROBLEMS.
C SEE PROG2, GENA, RBICO AND GETEG2 FOR MORE DETAILS.
C

REAL A(5000),B(1024),W(1024,3),W1(1024,3)
15 INTEGER INI(2000),INJ(5000),IK(1024,2),IW(1024)

COMMON/MA31J/LROW,LCOL,NCP,ND, IPD
COMMON/MA3 iN/MITE ,ACC ,EL, ER
COMN/MA3 1L/EPSTOL,U

20 COMMON/MA31I/DD,LP,MP
COMMON/MA,3 M/NI ,NJ, NVERSN ,NTYPE

C
DATA U,EPSTOL/1 .0E2, 2.OE-6/
DATA MITE,ACC,EL,ER/1500,1.OE-2,1.0,O.O/

*25 DATA IAI,IAJ,ND/2000,5000,1024/
DATA DD,LP,MP/1.0,6,5/
DATA NI,NJ/32,32/
DATA NVERSN,NTYPE/1,3/

C
30 CALL GENA(ND,NZ,A,INI,INJ,IAI,IAJ,W,BIK,IW)

NZ1-NZ+l
NCP-NJ
CALL RBICO(ND,NZ,A,INI,INJ,A(NZ),INJ(NZ1),IK,IW,

1W~,1) ,W(1, 2) )
35 IAJ2-NZ+LROW

CALL GETEG2(ND,NZ,A,INI,INJ,NZ,IA.J2,W,IK)
C

END
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PROGRAM PROG2D(OUTPUT,DATA,TAPE5-OUTPUT ,TAPE6-DATA)
C
C DRIVER PROGRAM USED DURING PHASE III.
C DESIGNED TO FIND THE ESTREME EIGENVALUES OF THE

5 C SYMMETRICALLY PRECONDITIONED TEST MATRICES.
C IT USES:
C A) NATURAL GRID POINT ORDERING SCHEME (NTYPE - 0)
C B) NO PRECONDITIONING
C SEE PROGlA FOR PROGRAM SET-UP ASSOCIATED WITH EACH OF

10 C THE TEST PROBLEMS.
C SEE PROG2, GENA AND GETEG2 FOR MORE DETAILS.
C

REAL A(5000),B(1024),W(1024,3),Wl(1024,3)
INTEGER INI(2000),INJ(5000),I(104,2),IW(1024)

15 C
COMMON/MA3 1J/LROW,LCOL,NCP,ND, IPD
COMMON/MA31N/MITE,ACC, EL,ER
COMMON/MA3 1L/EPSTOL,U
COMMON/MA31I/DD, LP,MP

*20 COMMON/MA3M/NI,NJ,NVERSN,NTYPE
C

DATA U,EPSTOL/1 .0E2, 2.OE-6/
*DATA MITE,ACC,EL,ER/750,1.OE-2,O.O,1.2/

DATA IAI,IAJ,ND/2000, 5000,1024/
25 DATA DD,LP,MP/1.O,6,5/

DATA NI,NJ/32.,32/
DATA NVERSN,NTYPE/1O0/

C
CALL GENA(NDNZ,A,INI,INJ,IAI,IAJ,W,B,IK,IW)

30 LROW-O
DO 10 I-1,ND
IK(I,1)0O
IK(I,2)inI
W(I,2)-1.0

35 10 CONTINUE
C

WRITE(LP, 15)
15 FORKAT(19H NO PRECONDITIONING)

IAJ2-NZ+LROW
40 CALL GETEG2(ND,NZ,A,INI,INJ,NZIAJ2,W,IC)A C END
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SUBROUTINE GETEG2(NN,NZ,A,INI,INJ,IAI,IAJ,W,IK)
~C

C SUBROUTINE TO CALCULATE THE HIGH AND LOW ORDER
C EIGENVALUES OF OUR SYMMETRICALLY PRECONDITIONED

5 C INPUT MATRIX USING THE HARWELL EAI4A LANCZOS
C ALGORITHM. SEE SOLVE FOR DESCRIPTION OF INPUT
C PARAMETERS.
C

REAL A(IAJ),W(NN,3)
10 REAL EIG(1024),U(1024),V(1024),TI(1024),T2(1024)

REAL X(3000) ,DEL(3000) ,ALFA(5000),BETA(5000)
INTEGER INI(IAI),INJ(IAJ),IK(NN,4)
INTEGER NU(3000)

C
15 COMMON/EA14BD/PRVT(4),IPRVT(6)

COMMON/MA31I/DD,LP,MP
COMMON/MA31J/LROW,LCOL,NCP, ND, IPD
COMMON/MA3IN/MITE,ACC, EL,ER

C
20 DATA LEIG,LX,LALFA/1024, 3000,5000/

C
NZ1-NZ+l
IAJ1 1IAJ-NZ
IFLAG--1

25 CALL SECOND(TIMI)
C
C PASS 1 CALCULATES THE EIGENVALUES IN THE INTERVAL
C EL TO ER AS SPECIFIED BY THE CALLING ROUTINE.
C PASS 2 CALCULATES THE HIGH ORDER EIGENVALUES USING

30 C ESTIMATED NORM OF THE MATRIX PRODUCED BY ROUTINE
C EA14A TO DEFINE THE INTERVAL TO BE EXAMINED.
C

DO 290 IPASS-1,2
C

35 WRITE(MP,10) IPASS
10 FORMAT(6H PASS ,I1,6H START)

C
CALL SECOND(TIM2)

C
40 C A MAXIMUM OF MITE ITERATIONS ARE ATTEMPTED TO

C ACQUIRE ALL EIGENVALUES IN THE INTERVAL EL TO ER
C TO AN ACCURACY OF ACC.
C

DO 30 ITER-1,MITE
45C CALL EAI4AD(NN,EL,ERACC,LEIGLX,LALFA,LP, 

IFLAG,
*U, V, EIG,NEIG, X,DEL,NU,ALFA,BETA)

C
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IF (IFLAG.EQ.0) GO TO 200
50 IF (IFLAG.GT.1) GO TO 100

C
C CALCULATES VECTOR U - VECTOR U + MATRIX A' TIMES VECTOR V,
C WHERE MATRIX A' IS THE RESULT OF SYMMETRICALLY
C PRECONDITIONING MATRIX A BY MATRIX C.

rt 55 C
CALL MA31G2(NN,A(NZ1),INJ(NZI),IAJ1,W(1,2),IK,V,T1)

CALL MA31H(A,W,INIINJ,NZ,NN,T1,T2)
CALL MA3IGI(NN,A(NZ1),INJ(NZ1),IAJ1,W(1,2),IK,T2)

60 DO 20 I-1,NN
U(I)-U(I) + T2(I)

20 CONTINUE
C
30 CONTINUE

65 GO TO 180
C
C EA14AD IS SIGNALING FAILURE
C
100 WRITE(LP,110) IFLAG

70 WRITE(MP,110) IFLAG
110 FORMAT(26HOEA14AD HAS FAILED. IFLAG-,J2)

GO TO 290

C EA14AD COULDN'T FINISH IN THE REQUESTED
75 C NUMBER OF ITERATIONS

C
180 WRITE(LP,185) MITE

WRITE(MP,185) MITE
185 FORMAT(39HO--WARNING ALL EIGENVALUES NOT FOND IN,

80 *14 ,2X, 10HITERATIONS)
ITER-MITE

C
C OUTPUT DATA ON THE CALCULATED EIGENVALUES
C

85 200 CONTINUE
CALL SECOND(TIM3)
TRUN-TIM3-TIM2
WRITE(LP,202) IPASS,TRUN

202 FORMAT(6H PASS ,I1,12H RUN TIME 1 ,FlO.3,SH SECS)
90 WRITE(LP,205) PRVT(1)

205 FORMAT(19HOSPECTRAL RADIUS - ,E14.7)
WRITE(LP,210) EL,ER

210 FORMAT(19H INTERVAL EXAMINED ,E13.5,3H - ,E13.5)
WRITE(LP,215)

95 215 FORMAT(3ORODATA ON RESULTING EIGENVALUES)
WRITE(LP,220) ITER,ACC

...- I.
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220 FORMAT(8H ITER - 13,2X,6HACC ,E13.5)
WRITE(LP)230) NEIG

230 FORMAT(28H NUM' DISTINCT EIGENVALUES - ,13)

100 C WRITE(LP, 235)
235 FORMAT(28HOORDERED LIST OF EIGENVALUES)

WRITE(LP,240) (EIGCI),I-1,NEIG)
240 FORMAT(1X,10E13.5)

105 WRITE(MP,245) IPASS
245 FORMAT(6H PASS ,Il,5H DONE)
C
C PERPARE TO EXAMINE EIGENVALUES AT THE END OF THE SPECTRUM.
C

110 EL-PRVT(1)*O.8
ER-PRVT Cl) *1.1

C

290 CONTINUE
115 C

CALL SECOND(TIM4)
TT-TIM4-TIM1
WRITE(LP,295) TT

295 FORMAT(18H TOTAL RUN TIME - FlO.3,5H SECS)
120 C

RETURN
I END

WITI
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